Advertisements
Advertisements
प्रश्न
Find the value of a, if pqa = (3p + q)2 – (3p – q)2
उत्तर
We have,
pqa = (3p + q)2 – (3p – q)2
⇒ pqa = [(3p + q) + (3p – q)][(3p + q) – (3p – q)] ...[Using the identity, a2 – b2 = (a + b)(a – b)]
⇒ pqa = [(3p + q + 3p – q)][3p + q – 3p + q]
⇒ pqa = 6p × 2q
⇒ `a = (6p xx 2q)/(pq) = ((6 xx 2)pq)/(pq)`
⇒ a = 12
APPEARS IN
संबंधित प्रश्न
Simplify (5x – 3y)2 – (5x + 3y)2
Using suitable identities, evaluate the following.
9.8 × 10.2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
3a2b3 – 27a4b
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`x^2/9 - y^2/25`
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
49x2 – 36y2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`y^3 - y/9`
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`x^2/25 - 625`
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
16x4 – 81
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
x4 – y4
Factorise the expression and divide them as directed:
(2x3 – 12x2 + 16x) ÷ (x – 2)(x – 4)