Advertisements
Advertisements
प्रश्न
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
3a2b3 – 27a4b
उत्तर
We have,
3a2b3 – 27a4b = 3a2b(b2 – 9a2)
= 3a2b[b2 – (3a)2]
= 3a2b(b + 3a)(b – 3a)
APPEARS IN
संबंधित प्रश्न
(5 + 20)(–20 – 5) = ?
Using identity, find the value of (1.9) × (2.1)
Multiply the following:
(a2 – b2), (a2 + b2)
Using suitable identities, evaluate the following.
(729)2 – (271)2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
9x2 – 1
The base of a parallelogram is (2x + 3 units) and the corresponding height is (2x – 3 units). Find the area of the parallelogram in terms of x. What will be the area of parallelogram of x = 30 units?
The radius of a circle is 7ab – 7bc – 14ac. Find the circumference of the circle. `(pi = 22/7)`
Verify the following:
(a2 – b2)(a2 + b2) + (b2 – c2)(b2 + c2) + (c2 – a2) + (c2 + a2) = 0
Find the value of a, if 8a = 352 – 272
Find the value of a, if pqa = (3p + q)2 – (3p – q)2