Advertisements
Advertisements
प्रश्न
Find the value of a, if 8a = 352 – 272
उत्तर
We have,
8a = 352 – 272
⇒ 8a = (35 + 27)(35 – 27) ...[Using the identity, a2 – b2 = (a + b)(a – b)]
⇒ 8a = 62 × 8
⇒ `a = (62 xx 8)/8`
⇒ a = 62
APPEARS IN
संबंधित प्रश्न
(x + 4) and (x – 5) are the factors of ___________
Factorise : 16p4 – 1
Evaluate the following, using suitable identity
297 × 303
(a + b)(a – b) = a2 – b2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
x2 – 9
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
y4 – 625
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
x4 – y4
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
(x + y)4 – (x – y)4
Factorise the expression and divide them as directed:
(9x2 – 4) ÷ (3x + 2)
Verify the following:
(ab + bc)(ab – bc) + (bc + ca)(bc – ca) + (ca + ab)(ca – ab) = 0