Advertisements
Advertisements
प्रश्न
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
y4 – 625
उत्तर
We have,
y4 – 625 = (y2)2 – (25)2
= (y2 + 25)(y2 – 25)
= (y2 + 25)(y2 – 52)
= (y2 + 25)(y + 5)(y – 5)
APPEARS IN
संबंधित प्रश्न
Evaluate the following, using suitable identity
990 × 1010
Using suitable identities, evaluate the following.
(132)2 – (68)2
Using suitable identities, evaluate the following.
(729)2 – (271)2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
x2 – 9
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
28ay2 – 175ax2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`(x^3y)/9 - (xy^3)/16`
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`1/36a^2b^2 - 16/49b^2c^2`
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
16x4 – 81
The base of a parallelogram is (2x + 3 units) and the corresponding height is (2x – 3 units). Find the area of the parallelogram in terms of x. What will be the area of parallelogram of x = 30 units?
Verify the following:
(p – q)(p2 + pq + q2) = p3 – q3