Advertisements
Advertisements
प्रश्न
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
x4 – 1
उत्तर
We have,
x4 – 1 = (x2)2 – 1
= (x2 + 1)(x2 – 1)
= (x2 + 1)(x + 1)(x – 1)
APPEARS IN
संबंधित प्रश्न
Using the identity (a + b)(a – b) = a2 – b2, find the following product
(1 + 3b)(3b – 1)
Using the identity (a + b)(a – b) = a2 – b2, find the following product
(6x + 7y)(6x – 7y)
Evaluate the following, using suitable identity
990 × 1010
Using suitable identities, evaluate the following.
(9.7)2 – (0.3)2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`x^2/25 - 625`
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`1/36a^2b^2 - 16/49b^2c^2`
Factorise the expression and divide them as directed:
(x3 + x2 – 132x) ÷ x(x – 11)
The base of a parallelogram is (2x + 3 units) and the corresponding height is (2x – 3 units). Find the area of the parallelogram in terms of x. What will be the area of parallelogram of x = 30 units?
Verify the following:
(ab + bc)(ab – bc) + (bc + ca)(bc – ca) + (ca + ab)(ca – ab) = 0
Find the value of a, if pq2a = (4pq + 3q)2 – (4pq – 3q)2