Advertisements
Advertisements
प्रश्न
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
a4 – (a – b)4
उत्तर
We have,
a4 – (a – b)4 = (a2)2 – [(a – b)2]2
= [a2 + (a – b)2][a2 – (a – b)2]
= [a2 + a2 + b2 – 2ab][a2 – (a2 + b2 – 2ab)]
= [2a2 + b2 – 2ab][–b2 + 2ab]
= (2a2 + b2 – 2ab)(2ab – b2)
APPEARS IN
संबंधित प्रश्न
Expand: 102 x 98
Factorise : 16p4 – 1
Find the value of (x – y)(x + y)(x2 + y2)
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
9x2 – 1
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
49x2 – 36y2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`y^3 - y/9`
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`(4x^2)/9 - (9y^2)/16`
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`1/36a^2b^2 - 16/49b^2c^2`
Find the value of a, if 9a = 762 – 672
Find the value of `(198 xx 198 - 102 xx 102)/96`