Advertisements
Advertisements
प्रश्न
Using suitable identities, evaluate the following.
(132)2 – (68)2
उत्तर
We have,
(132)2 – (68)2 = (132 + 68)(132 – 68) ...[Using the identity, a2 – b2 = (a + b)(a – b)]
= 200 × 64
= 12800
APPEARS IN
संबंधित प्रश्न
Factorise the following algebraic expression by using the identity a2 – b2 = (a + b)(a – b)
9 – 4y2
Simplify (5x – 3y)2 – (5x + 3y)2
The value of (a + 1)(a – 1)(a2 + 1) is a4 – 1.
Using suitable identities, evaluate the following.
(69.3)2 – (30.7)2
Using suitable identities, evaluate the following.
(9.7)2 – (0.3)2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
x4 – y4
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
8a3 – 2a
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
9x2 – (3y + z)2
Factorise the expression and divide them as directed:
(x2 – 22x + 117) ÷ (x – 13)
Find the value of a, if pq2a = (4pq + 3q)2 – (4pq – 3q)2