Advertisements
Advertisements
प्रश्न
The value of (a + 1)(a – 1)(a2 + 1) is a4 – 1.
विकल्प
True
False
उत्तर
This statement is True.
Explanation:
Solving it, we get
(a + 1)(a – 1)(a2 + 1) = {(a + 1)(a – 1)} × (a2 + 1)
⇒ (a + 1)(a – 1)(a2 + 1) = (a2 – 1)(a2 + 1) ...[∵ (x + y)(x – y) = x2 – y2; Put x = a and y = 1 ⇒ (a + 1)(a – 1) = a2 – 1]
⇒ (a + 1)(a – 1)(a2 + 1) = a4 – 1 ...[∵ (x2 + y2)(x2 – y2) = x4 – y4; Put x = a and y = 1 ⇒ (a2 + 1)(a2 – 1) = a4 – 1]
Thus, the value of (a + 1)(a – 1)(a2 + 1) is a4 – 1.
APPEARS IN
संबंधित प्रश्न
Expand: 102 x 98
a2 – b2 = (a + b) ______.
672 – 372 = (67 – 37) × ______ = ______.
Multiply the following:
(a2 – b2), (a2 + b2)
Using suitable identities, evaluate the following.
(729)2 – (271)2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
9x2 – (3y + z)2
Factorise the expressions and divide them as directed:
(x4 – 16) ÷ x3 + 2x2 + 4x + 8
The sum of (x + 5) observations is x4 – 625. Find the mean of the observations.
Verify the following:
(a + b + c)(a2 + b2 + c2 – ab – bc – ca) = a3 + b3 + c3 – 3abc
Find the value of a, if 9a = 762 – 672