Advertisements
Advertisements
Question
The value of (a + 1)(a – 1)(a2 + 1) is a4 – 1.
Options
True
False
Solution
This statement is True.
Explanation:
Solving it, we get
(a + 1)(a – 1)(a2 + 1) = {(a + 1)(a – 1)} × (a2 + 1)
⇒ (a + 1)(a – 1)(a2 + 1) = (a2 – 1)(a2 + 1) ...[∵ (x + y)(x – y) = x2 – y2; Put x = a and y = 1 ⇒ (a + 1)(a – 1) = a2 – 1]
⇒ (a + 1)(a – 1)(a2 + 1) = a4 – 1 ...[∵ (x2 + y2)(x2 – y2) = x4 – y4; Put x = a and y = 1 ⇒ (a2 + 1)(a2 – 1) = a4 – 1]
Thus, the value of (a + 1)(a – 1)(a2 + 1) is a4 – 1.
APPEARS IN
RELATED QUESTIONS
Choose the right answers from the option:
The difference of the squares, (612 – 512 ) is equal to ______.
Using the identity (a + b)(a – b) = a2 – b2, find the following product
(1 + 3b)(3b – 1)
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
x2 – 9
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`x^2/9 - y^2/25`
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`1/36a^2b^2 - 16/49b^2c^2`
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
p5 – 16p
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
16x4 – 81
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
x4 – y4 + x2 – y2
The sum of (x + 5) observations is x4 – 625. Find the mean of the observations.
Find the value of `(6.25 xx 6.25 - 1.75 xx 1.75)/(4.5)`