Advertisements
Advertisements
प्रश्न
Verify the following:
(a + b + c)(a2 + b2 + c2 – ab – bc – ca) = a3 + b3 + c3 – 3abc
उत्तर
Taking L.H.S. = (a + b + c)(a2 + b2 + c2 – ab – bc – ca)
= a(a2 + b2 + c2 – ab – bc – ca) + b(a2 + b2 + c2 – ab – bc – ca) + c(a2 + b2 + c2 – ab – bc – ca) ...[Distributive law]
= a3 + ab2 + ac2 – a2b – abc – a2c + ba2 + b3 + bc2 – b2a – b2c – bca + ca2 + cb2 + c3 – cab – c2b – c2a
= a3 + b3 + c3 – 3abc
= R.H.S.
Hence verified.
APPEARS IN
संबंधित प्रश्न
Factorise : 16p4 – 1
Using the identity (a + b)(a – b) = a2 – b2, find the following product
(1 + 3b)(3b – 1)
Using identity, find the value of (1.9) × (2.1)
If X = a2 – 1 and Y = 1 – b2, then find X + Y and factorize the same
Find the value of (x – y)(x + y)(x2 + y2)
Using suitable identities, evaluate the following.
(35.4)2 – (14.6)2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
9x2 – 1
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`y^3 - y/9`
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
(x + y)4 – (x – y)4
Factorise the expression and divide them as directed:
(3x4 – 1875) ÷ (3x2 – 75)