Advertisements
Advertisements
प्रश्न
Factorise the expression and divide them as directed:
(3x4 – 1875) ÷ (3x2 – 75)
उत्तर
We have,
`(3x^4 - 1875) ÷ (3x^2 - 75) = (3x^4 - 1875)/(3x^2 - 75)`
= `(x^4 - 625)/(x^2 - 25)`
= `((x^2)^2 - (25)^2)/(x^2 - 25)`
= `((x^2 + 25)(x^2 - 25))/((x^2 - 25))`
= x2 + 25
APPEARS IN
संबंधित प्रश्न
Expand: (3x + 4y)(3x - 4y)
Using the identity (a + b)(a – b) = a2 – b2, find the following product
(6x + 7y)(6x – 7y)
Find the value of (x – y)(x + y)(x2 + y2)
Multiply the following:
(a2 – b2), (a2 + b2)
Using suitable identities, evaluate the following.
(69.3)2 – (30.7)2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
x2 – 9
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
a4 – (a – b)4
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
16x4 – 625y4
Factorise the expression and divide them as directed:
(2x3 – 12x2 + 16x) ÷ (x – 2)(x – 4)
Verify the following:
`((3p)/7 + 7/(6p))^2 - (3/7p + 7/(6p))^2 = 2`