Advertisements
Advertisements
प्रश्न
Factorise the expression and divide them as directed:
(3x4 – 1875) ÷ (3x2 – 75)
उत्तर
We have,
`(3x^4 - 1875) ÷ (3x^2 - 75) = (3x^4 - 1875)/(3x^2 - 75)`
= `(x^4 - 625)/(x^2 - 25)`
= `((x^2)^2 - (25)^2)/(x^2 - 25)`
= `((x^2 + 25)(x^2 - 25))/((x^2 - 25))`
= x2 + 25
APPEARS IN
संबंधित प्रश्न
Expand: (3x + 4y)(3x - 4y)
Using the identity (a + b)(a – b) = a2 – b2, find the following product
(p + 2)(p – 2)
Evaluate the following, using suitable identity
990 × 1010
672 – 372 = (67 – 37) × ______ = ______.
Using suitable identities, evaluate the following.
(35.4)2 – (14.6)2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
16x4 – 81
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
(a – b)2 – (b – c)2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
x4 – y4 + x2 – y2
Verify the following:
(m + n)(m2 – mn + n2) = m3 + n3
Find the value of a, if pq2a = (4pq + 3q)2 – (4pq – 3q)2