Advertisements
Advertisements
प्रश्न
Factorise the expressions and divide them as directed:
(x4 – 16) ÷ x3 + 2x2 + 4x + 8
उत्तर
We have,
(x4 – 16) ÷ x3 + 2x2 + 4x + 8
= `(x^4 - 16)/(x^3 + 2x^2 + 4x + 8)`
= `((x^2)^2 - 4^2)/(x^2(x + 2) + 4(x + 2))`
= `((x^2 + 4)(x^2 - 4))/((x^2 + 4)(x + 2))` ...[∵ a2 – b2 = (a + b)(a – b)]
= `(x^2 - 2^2)/(x + 2)`
= `((x + 2)(x - 2))/(x + 2)`
= x – 2
APPEARS IN
संबंधित प्रश्न
Using the identity (a + b)(a – b) = a2 – b2, find the following product
(p + 2)(p – 2)
If X = a2 – 1 and Y = 1 – b2, then find X + Y and factorize the same
Using suitable identities, evaluate the following.
9.8 × 10.2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
9x2 – 1
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`y^3 - y/9`
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`(4x^2)/9 - (9y^2)/16`
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`(x^3y)/9 - (xy^3)/16`
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`1/36a^2b^2 - 16/49b^2c^2`
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
a4 – (a – b)4
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
16x4 – 81