Advertisements
Advertisements
प्रश्न
Factorise the expression and divide them as directed:
(2x3 – 12x2 + 16x) ÷ (x – 2)(x – 4)
उत्तर
We have,
(2x3 – 12x2 + 16x) ÷ (x – 2)(x – 4)
= `(2x^3 - 12x^2 + 16x)/((x - 2)(x - 4))`
= `(2x(x^2 - 6x + 8))/((x - 2)(x - 4))`
= `(2x(x^2 - 4x - 2x + 8))/((x - 2)(x - 4))`
= `(2x[x(x - 4) - 2(x - 4)])/((x - 2)(x - 4))`
= `(2x(x - 4)(x - 2))/((x - 2)(x - 4))`
= 2x
APPEARS IN
संबंधित प्रश्न
Choose the right answers from the option:
The difference of the squares, (612 – 512 ) is equal to ______.
Expand: (3x + 4y)(3x - 4y)
Factorise the following algebraic expression by using the identity a2 – b2 = (a + b)(a – b)
25a2 – 49b2
Factorise: 4x2 – 9y2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
9x2 – 1
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
x4 – 1
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
(a – b)2 – (b – c)2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
x4 – y4 + x2 – y2
Verify the following:
(a2 – b2)(a2 + b2) + (b2 – c2)(b2 + c2) + (c2 – a2) + (c2 + a2) = 0
Find the value of a, if 9a = 762 – 672