Advertisements
Advertisements
प्रश्न
If X = a2 – 1 and Y = 1 – b2, then find X + Y and factorize the same
उत्तर
Given X = a2 – 1
Y = 1 – b2
X + Y = (a2 – 1) + (1 – b2)
= a2 – 1 + 1 – b2
We know the identity that a2 – b2 = (a + b)(a – b)
∴ X + Y = (a + b)(a – b)
APPEARS IN
संबंधित प्रश्न
(7x + 3)(7x – 4) = 49x2 – 7x – 12
Using the identity (a + b)(a – b) = a2 – b2, find the following product
(p + 2)(p – 2)
Using the identity (a + b)(a – b) = a2 – b2, find the following product
(6x + 7y)(6x – 7y)
Factorise the following algebraic expression by using the identity a2 – b2 = (a + b)(a – b)
9 – 4y2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`x^2/25 - 625`
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`x^2/8 - y^2/18`
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
a4 – (a – b)4
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
16x4 – 81
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
(a – b)2 – (b – c)2
Verify the following:
(p – q)(p2 + pq + q2) = p3 – q3