Advertisements
Advertisements
प्रश्न
Factorise the following algebraic expression by using the identity a2 – b2 = (a + b)(a – b)
9 – 4y2
उत्तर
9 – 4y2 = 32 – 22y2
= 32 – (2y)2
let a = 3 and b = 2y, then
a2 – b2 = (a + b)(a – b)
∴ 32 – (2y)2 = (3 + 2y)(3 – 2y)
9 – 4y2 = (3 + 2y)(3 – 2y)
APPEARS IN
संबंधित प्रश्न
Factorise : 16p4 – 1
The product of (x + 5) and (x – 5) is ____________
Factorise: 4x2 – 9y2
The value of (a + 1)(a – 1)(a2 + 1) is a4 – 1.
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
4x2 – 49y2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
3a2b3 – 27a4b
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
49x2 – 36y2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`1/36a^2b^2 - 16/49b^2c^2`
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
9x2 – (3y + z)2
Find the value of a, if 8a = 352 – 272