Advertisements
Advertisements
Question
Factorise the following algebraic expression by using the identity a2 – b2 = (a + b)(a – b)
9 – 4y2
Solution
9 – 4y2 = 32 – 22y2
= 32 – (2y)2
let a = 3 and b = 2y, then
a2 – b2 = (a + b)(a – b)
∴ 32 – (2y)2 = (3 + 2y)(3 – 2y)
9 – 4y2 = (3 + 2y)(3 – 2y)
APPEARS IN
RELATED QUESTIONS
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
4x2 – 49y2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
28ay2 – 175ax2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
16x4 – 81
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
(x + y)4 – (x – y)4
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
x4 – y4 + x2 – y2
Factorise the expression and divide them as directed:
(3x4 – 1875) ÷ (3x2 – 75)
Verify the following:
(a + b + c)(a2 + b2 + c2 – ab – bc – ca) = a3 + b3 + c3 – 3abc
Verify the following:
`((3p)/7 + 7/(6p))^2 - (3/7p + 7/(6p))^2 = 2`
Find the value of a, if pq2a = (4pq + 3q)2 – (4pq – 3q)2
The product of two expressions is x5 + x3 + x. If one of them is x2 + x + 1, find the other.