Advertisements
Advertisements
Question
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
(x + y)4 – (x – y)4
Solution
We have,
(x + y)4 – (x – y)4 = [(x + y2]2 – [(x – y)2]2
= [(x + y)2 + (x – y)2][(x + y)2 – (x – y2)]
= (x2 + y2 + 2xy + x2 + y2 – 2xy)(x + y + x – y)(x + y – x + y)
= (2x2 + 2y2)(2x)(2y)
= 2(x2 + y2)(2x)(2y)
= 8xy(x2 + y2)
APPEARS IN
RELATED QUESTIONS
Evaluate the following, using suitable identity
990 × 1010
672 – 372 = (67 – 37) × ______ = ______.
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
x2 – 9
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`(4x^2)/9 - (9y^2)/16`
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`1/36a^2b^2 - 16/49b^2c^2`
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
x4 – 1
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
9x2 – (3y + z)2
Factorise the expression and divide them as directed:
(9x2 – 4) ÷ (3x + 2)
Factorise the expressions and divide them as directed:
(x4 – 16) ÷ x3 + 2x2 + 4x + 8
Find the value of `(6.25 xx 6.25 - 1.75 xx 1.75)/(4.5)`