Advertisements
Advertisements
प्रश्न
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
(x + y)4 – (x – y)4
उत्तर
We have,
(x + y)4 – (x – y)4 = [(x + y2]2 – [(x – y)2]2
= [(x + y)2 + (x – y)2][(x + y)2 – (x – y2)]
= (x2 + y2 + 2xy + x2 + y2 – 2xy)(x + y + x – y)(x + y – x + y)
= (2x2 + 2y2)(2x)(2y)
= 2(x2 + y2)(2x)(2y)
= 8xy(x2 + y2)
APPEARS IN
संबंधित प्रश्न
(5 + 20)(–20 – 5) = ?
Using identity, find the value of (1.9) × (2.1)
Using suitable identities, evaluate the following.
9.8 × 10.2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`(2p^2)/25 - 32q^2`
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`y^3 - y/9`
The sum of first n natural numbers is given by the expression `n^2/2 + n/2`. Factorise this expression.
Find the value of a, if 8a = 352 – 272
Find the value of a, if pqa = (3p + q)2 – (3p – q)2
Find the value of a, if pq2a = (4pq + 3q)2 – (4pq – 3q)2
Find the value of `(198 xx 198 - 102 xx 102)/96`