Advertisements
Advertisements
Question
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
y4 – 625
Solution
We have,
y4 – 625 = (y2)2 – (25)2
= (y2 + 25)(y2 – 25)
= (y2 + 25)(y2 – 52)
= (y2 + 25)(y + 5)(y – 5)
APPEARS IN
RELATED QUESTIONS
Expand: 102 x 98
The pathway of a square paddy field has 5 m width and length of its side is 40 m. Find the total area of its pathway. (Note: Use suitable identity)
Find the value of (x – y)(x + y)(x2 + y2)
Using suitable identities, evaluate the following.
(69.3)2 – (30.7)2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`x^2/25 - 625`
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`(x^3y)/9 - (xy^3)/16`
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`1/36a^2b^2 - 16/49b^2c^2`
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
a4 – (a – b)4
Factorise the expression and divide them as directed:
(2x3 – 12x2 + 16x) ÷ (x – 2)(x – 4)
Find the value of a, if pq2a = (4pq + 3q)2 – (4pq – 3q)2