Advertisements
Advertisements
Question
Using suitable identities, evaluate the following.
(69.3)2 – (30.7)2
Solution
We have,
(69.3)2 – (30.7)2 = (69.3 + 30.7)(69.3 – 30.7) ...[Using the identity, (a + b)(a – b) = a2 – b2]
= 100 × 38.6
= 3860
APPEARS IN
RELATED QUESTIONS
Factorise : 16p4 – 1
The product of (x + 5) and (x – 5) is ____________
Using suitable identities, evaluate the following.
(339)2 – (161)2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
25ax2 – 25a
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`(4x^2)/9 - (9y^2)/16`
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
16x4 – 625y4
The sum of first n natural numbers is given by the expression `n^2/2 + n/2`. Factorise this expression.
Verify the following:
(ab + bc)(ab – bc) + (bc + ca)(bc – ca) + (ca + ab)(ca – ab) = 0
Verify the following:
(m + n)(m2 – mn + n2) = m3 + n3
Find the value of a, if 9a = 762 – 672