Advertisements
Advertisements
Question
Factorise : 16p4 – 1
Solution
16p4 – 1 = 24p4 – 1
= (22)2(p2)2 – 12
= (22p2)2 – 12
Comparing with a2 – b2 (a + b)(a – b) where a = 22p2 and b = 1
∴ (22p2)2 – 12 = (22p2 + 1)(22p2 – 1)
= (4p2 + 1)(4p2 – 1)
∴ 16p4 – 1 = (4p2 + 1)(4p2 – 1)
= (4p2 + 1)(22p2 – 12)
= (4p2 + 1)[(2p)2 – 12]
= (4p2 + 1)(2p + 1)(2p – 1) ...[∵ using a2 – b2 = (a + b)(a – b)]
∴ 16p4 – 1 = (4p2 + 1)(2p + 1)(2p – 1)
APPEARS IN
RELATED QUESTIONS
Expand 4p2 – 25q2
Using identity, find the value of (1.9) × (2.1)
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
3a2b3 – 27a4b
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
`(4x^2)/9 - (9y^2)/16`
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
a4 – (a – b)4
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
x4 – y4
Factorise the expression and divide them as directed:
(9x2 – 4) ÷ (3x + 2)
Factorise the expression and divide them as directed:
(3x2 – 48) ÷ (x – 4)
Factorise the expression and divide them as directed:
(3x4 – 1875) ÷ (3x2 – 75)
Verify the following:
`((3p)/7 + 7/(6p))^2 - (3/7p + 7/(6p))^2 = 2`