Advertisements
Advertisements
प्रश्न
Evaluate: `int_0^x (xtan x)/(sec x + tan x) dx`
उत्तर
`I = int_0^pi (x tan x)/(sec x + tan x) dx` ......(1)
using `int_0^a f(x)dx = int_0^a f(a-x)dx`
`I = int_0^pi ((pi-x) tanpi -x)/(sec(pi-x)+ tan (pi -x))`
`I = int_0^pi ((pi - x) tan x) /(sec x + tan x )dx` .....(2 ) `{
`{(sec(pi -x)= -secx),(tan (pi-x)=- tan x):}}`
Adding (1) and (2) we get
`therefore 2I = pi int_0^pi (tanx)/(secx + tan x)dx`
`2I = pi int_0^pi (secx - tan x)dx)`
`2I = pi int_0^pi (secx - tan x-tan^2x)dx)`
`2I = pi int_0^pi (secx - tan x-tan^2x+1)dx)`
`2I = pi(secx - tanx + x)_0^pi`
`2I = pi int_0^pi (sec pi - tan pi+pi) - (sec0 - tan 0+0)`
`I = pi/2 (-1 -0 + pi -(1 - 0 + 0) )`
`I = pi/2 (-1+ pi -1)`
`I = pi/2 (pi - 2)= pi (pi/2 - 1)`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int sec^2x/(cosec^2x)dx`
Given three identical Boxes A, B and C, Box A contains 2 gold and 1 silver coin, Box B contains 1 gold and 2 silver coins and Box C contains 3 silver coins. A person choose a Box at random and takes out a coin. If the coin drawn is of silver, find the probability that it has been drawn from the Box which has the remaining two coins also of silver.
Evaluate: `int 1/"x"^2 "sin"^2 (1/"x") "dx"`
Evaluate: `int_0^(pi/4) "log" (1 + "tan" theta) "d" theta`
Evaluate: ` int tan^3x "dx"`
Using De Moivre’s theorem, find the least positive integer n such that `((2i)/(1+i))^n` is a positive integer.