हिंदी

Factorise: 8p3 −27p3 - Marathi (Second Language) [मराठी (द्वितीय भाषा)]

Advertisements
Advertisements

प्रश्न

Factorise:

8p−\[\frac{27}{p^3}\]

योग

उत्तर

It is known that,

a3 − b3 = (a − b)(a2 + ab + b2)

\[\ 8p^3  - \frac{27}{p^3}\] 

\[ = \left(2p \right)^3 - \left(\frac{3}{p}\right)^3\] 

\[ = \left(2p - \frac{3}{p} \right)\left\{\left(2p \right)^2 + \left( \frac{3}{p} \right)^2 + \left(2p \right) \times \left(\frac{3}{p} \right) \right\}\] 

\[ = \left(2p - \frac{3}{p} \right)\left(4 p^2 + \frac{9}{p^2} + 6 \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Factorisation of Algebraic expressions - Practice Set 6.3 [पृष्ठ ३२]

APPEARS IN

बालभारती Mathematics [English] 8 Standard Maharashtra State Board
अध्याय 6 Factorisation of Algebraic expressions
Practice Set 6.3 | Q 1.5 | पृष्ठ ३२
बालभारती Integrated 8 Standard Part 2 [English Medium] Maharashtra State Board
अध्याय 3.1 Factorisation of Algebraic expressions
Practice Set 6.3 | Q 1. (5) | पृष्ठ ४७
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×