Advertisements
Advertisements
प्रश्न
Factorise:
8p3 −\[\frac{27}{p^3}\]
योग
उत्तर
It is known that,
a3 − b3 = (a − b)(a2 + ab + b2)
\[\ 8p^3 - \frac{27}{p^3}\]
\[ = \left(2p \right)^3 - \left(\frac{3}{p}\right)^3\]
\[ = \left(2p - \frac{3}{p} \right)\left\{\left(2p \right)^2 + \left( \frac{3}{p} \right)^2 + \left(2p \right) \times \left(\frac{3}{p} \right) \right\}\]
\[ = \left(2p - \frac{3}{p} \right)\left(4 p^2 + \frac{9}{p^2} + 6 \right)\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
संबंधित प्रश्न
Simplify:
\[\frac{4 x^2 - 11x + 6}{16 x^2 - 9}\]
Simplify:
\[\frac{1 - 2x + x^2}{1 - x^3} \times \frac{1 + x + x^2}{1 + x}\]
Factorise:
x3 − 64y3
Factorise:
27m3 − 216n3
Factorise:
125y3 − 1
Factorise:
343a3 − 512b3
Simplify:
(x + y)3 − (x − y)3
Simplify:
(3xy − 2ab)3 − (3xy + 2ab)3
Factorise: x3 - 8y3
Factorise: `a^3 - 1/(a^3)`