Advertisements
Advertisements
प्रश्न
Factorise:
8p3 −\[\frac{27}{p^3}\]
उत्तर
It is known that,
a3 − b3 = (a − b)(a2 + ab + b2)
\[\ 8p^3 - \frac{27}{p^3}\]
\[ = \left(2p \right)^3 - \left(\frac{3}{p}\right)^3\]
\[ = \left(2p - \frac{3}{p} \right)\left\{\left(2p \right)^2 + \left( \frac{3}{p} \right)^2 + \left(2p \right) \times \left(\frac{3}{p} \right) \right\}\]
\[ = \left(2p - \frac{3}{p} \right)\left(4 p^2 + \frac{9}{p^2} + 6 \right)\]
संबंधित प्रश्न
Simplify:
\[\frac{m^2 - n^2}{\left( m + n \right)^2} \times \frac{m^2 + mn + n^2}{m^3 - n^3}\]
Simplify:
\[\frac{a^2 + 10a + 21}{a^2 + 6a - 7} \times \frac{a^2 - 1}{a + 3}\]
Simplify:
\[\frac{3 x^2 - x - 2}{x^2 - 7x + 12} \div \frac{3 x^2 - 7x - 6}{x^2 - 4}\]
Simplify:
\[\frac{1 - 2x + x^2}{1 - x^3} \times \frac{1 + x + x^2}{1 + x}\]
Factorise:
y3 − 27
Factorise:
x3 − 64y3
Factorise:
27m3 − 216n3
Simplify:
(3a + 5b)3 − (3a − 5b)3
Factorise: `a^3 - 1/(a^3)`
Simplify: (2x + 3y)3 - (2x - 3y)3