मराठी
Maharashtra State BoardSSC (English Medium) 8th Standard

Factorisation using Identity a3 - b3 = (a - b)(a2 + ab + b2)

Advertisements

Topics

Formula

  • a3 - b3 = ( a - b )( a+ ab + b2)

Notes

Factorisation using Identity a3 - b3 = (a - b)(a2 + ab + b2):

(a - b)3 = a3 - 3a2b + 3ab2 - b3 = a3 - b3 - 3ab(a - b)

Now, a3 - b3 - 3ab(a - b) = (a - b)3

∴ a3 - b3 = (a - b)3 + 3ab(a - b)

a3 - b3 = [(a - b)(a - b)2 + 3ab(a - b)]

a3 - b3 = (a - b)[(a - b)2 + 3ab]

a3 - b3 = (a - b)(a2 - 2ab + b2 + 3ab)

a3 - b3 = (a - b)(a2 + ab + b2)

∴ a3 - b3 = (a - b)(a2 + ab + b2).

Example

Factorise: x3 - 8y3

x3 - 8y3 = x3 - (2y)3

∴ x3 - 8y3 = x3 - (2y)

x3 - 8y3 = (x - 2y)(x2 + 2xy + 4y2)

Example

Factorise: 27p3 - 125q3.

27p3 - 125q3

= (3p)3 - (5q)3

= (3p - 5q) (9p2 + 15pq +25q2)

Example

Factorise: 54p3 - 250q3.

54p3 - 250q3.

= 2[27p3 - 125q3]

= 2[(3p)3 - (5q)3]

= 2(3p - 5q)(9p2 + 15pq + 25q2)

Example

Factorise: `a^3 - 1/(a^3)`

`a^3 - 1/(a^3)`

`= (a - 1/a)(a^2 + 1 + 1/(a^2))`

Example

Simplify: (a - b)3 - (a3 - b3)

(a - b)3 - (a3 - b3)

= a3 - 3a2b + 3ab2 - b3 - a3 + b3

= 3a2b + 3ab2.

Example

Simplify: (2x + 3y)3 - (2x - 3y)3

Using the formula a3 - b3 = (a - b)(a2 + ab + b2)

∴ (2x + 3y)3 - (2x - 3y)3

= [(2x + 3y) - (2x - 3y)][(2x + 3y)2 + (2x + 3y)(2x - 3y) + (2x - 3y)2]

= [2x + 3y - 2x + 3y][4x2 + 12xy + 9y2 + 4x2 - 9y2 + 4x2 - 12xy + 9y2]

= 6y(12x2 + 9y2)

= 72x2y + 54y3

If you would like to contribute notes or other learning material, please submit them using the button below.
Advertisements
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×