Advertisements
Advertisements
प्रश्न
Simplify:
\[\frac{x^2 - 5x - 24}{\left( x + 3 \right)\left( x + 8 \right)} \times \frac{x^2 - 64}{\left( x - 8 \right)^2}\]
उत्तर
It is known that,
a2 − b2 = (a + b) (a − b)
a3 − b3 = (a − b)(a2 + ab + b2)
\[\ \frac{x^2 - 5x - 24}{\left( x + 3 \right)\left( x + 8 \right)} \times \frac{x^2 - 64}{\left( x - 8 \right)^2}\]
\[ = \frac{x^2 - 8x + 3x - 24}{\left( x + 3 \right)\left( x + 8 \right)} \times \frac{\left( x \right)^2 - \left( 8 \right)^2}{\left( x - 8 \right)^2}\]
\[ = \frac{x\left( x - 8 \right) + 3\left( x - 8 \right)}{\left( x + 3 \right)\left( x + 8 \right)} \times \frac{\left( x + 8 \right)\left( x - 8 \right)}{\left( x - 8 \right)\left( x - 8 \right)}\]
\[ = \frac{\left( x + 3 \right)\left( x - 8 \right)}{\left( x + 3 \right)\left( x + 8 \right)} \times \frac{\left( x + 8 \right)\left( x - 8 \right)}{\left( x - 8 \right)\left( x - 8 \right)}\]
= 1
संबंधित प्रश्न
Simplify:
\[\frac{4 x^2 - 11x + 6}{16 x^2 - 9}\]
Simplify:
\[\frac{a^3 - 27}{5 a^2 - 16a + 3} \div \frac{a^2 + 3a + 9}{25 a^2 - 1}\]
Factorise:
8p3 −\[\frac{27}{p^3}\]
Factorise:
343a3 − 512b3
Simplify:
p3 − (p + 1)3
Factorise: x3 - 8y3
Factorise: `a^3 - 1/(a^3)`
Simplify: (a - b)3 - (a3 - b3)
Factorise the following:
27x3 – 8y3
Factorise the following:
a6 – 64