Advertisements
Advertisements
प्रश्न
Factorise:
343a3 − 512b3
बेरीज
उत्तर
It is known that,
a3 − b3 = (a − b)(a2 + ab + b2)
343a3 − 512b3
= (7a)2 − (8b)3
= (7a − 8b) {(7a)2 + (7a) × (8b) + (8b)2}
= (7a − 8b)(49a2 + 56ab + 64b2)
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
संबंधित प्रश्न
Simplify:
\[\frac{8 x^3 - 27 y^3}{4 x^2 - 9 y^2}\]
Simplify:
\[\frac{x^2 - 5x - 24}{\left( x + 3 \right)\left( x + 8 \right)} \times \frac{x^2 - 64}{\left( x - 8 \right)^2}\]
Simplify:
\[\frac{a^3 - 27}{5 a^2 - 16a + 3} \div \frac{a^2 + 3a + 9}{25 a^2 - 1}\]
Factorise:
64x3 − 729y3
Factorise:
`16a^3 - 128/b^3`
Simplify:
(a + b)3 − a3 − b3
Factorise: 54p3 - 250q3.
Simplify: (a - b)3 - (a3 - b3)
Simplify: (2x + 3y)3 - (2x - 3y)3
Factorise the following:
27x3 – 8y3