Advertisements
Advertisements
Question
Factorise:
343a3 − 512b3
Solution
It is known that,
a3 − b3 = (a − b)(a2 + ab + b2)
343a3 − 512b3
= (7a)2 − (8b)3
= (7a − 8b) {(7a)2 + (7a) × (8b) + (8b)2}
= (7a − 8b)(49a2 + 56ab + 64b2)
RELATED QUESTIONS
Simplify:
\[\frac{m^2 - n^2}{\left( m + n \right)^2} \times \frac{m^2 + mn + n^2}{m^3 - n^3}\]
Simplify:
\[\frac{x^2 - 5x - 24}{\left( x + 3 \right)\left( x + 8 \right)} \times \frac{x^2 - 64}{\left( x - 8 \right)^2}\]
Simplify:
\[\frac{3 x^2 - x - 2}{x^2 - 7x + 12} \div \frac{3 x^2 - 7x - 6}{x^2 - 4}\]
Simplify:
\[\frac{4 x^2 - 11x + 6}{16 x^2 - 9}\]
Simplify:
\[\frac{a^3 - 27}{5 a^2 - 16a + 3} \div \frac{a^2 + 3a + 9}{25 a^2 - 1}\]
Simplify:
\[\frac{1 - 2x + x^2}{1 - x^3} \times \frac{1 + x + x^2}{1 + x}\]
Factorise:
27m3 − 216n3
Factorise:
8p3 −\[\frac{27}{p^3}\]
Factorise:
`16a^3 - 128/b^3`
Factorise: `a^3 - 1/(a^3)`