Advertisements
Advertisements
Question
Simplify:
\[\frac{3 x^2 - x - 2}{x^2 - 7x + 12} \div \frac{3 x^2 - 7x - 6}{x^2 - 4}\]
Solution
It is known that,
a3 − b3 = (a − b)(a2 + ab + b2)
`(3x^2 - x - 2)/(x^2 - 7x + 12) xx (x^2 - 4)/(3x^2 - 7x - 6)`
= `(3x^2 - 3x + 2x - 2)/(x^2 - 4x - 3x + 12) xx (x^2 - 2^2)/(3x^2 - 9x + 2x - 6)`
= `(3x(x - 1) + 2(x - 1))/(x(x - 4) - 3(x - 4)) xx ((x + 2)(x - 2))/(3x(x - 3) + 2(x - 3))`
= `((x - 1)(3x + 2))/((x - 4)(x - 3)) xx ((x + 2)(x - 2))/((x - 3)(3x + 2))`
= `((x - 1)(x + 2)(x - 2))/((x - 4)(x - 3)^2)`
RELATED QUESTIONS
Simplify:
\[\frac{8 x^3 - 27 y^3}{4 x^2 - 9 y^2}\]
Simplify:
\[\frac{m^2 - n^2}{\left( m + n \right)^2} \times \frac{m^2 + mn + n^2}{m^3 - n^3}\]
Simplify:
\[\frac{a^3 - 27}{5 a^2 - 16a + 3} \div \frac{a^2 + 3a + 9}{25 a^2 - 1}\]
Simplify:
\[\frac{1 - 2x + x^2}{1 - x^3} \times \frac{1 + x + x^2}{1 + x}\]
Factorise:
125y3 − 1
Factorise:
343a3 − 512b3
Simplify:
(3xy − 2ab)3 − (3xy + 2ab)3
Factorise: 27p3 - 125q3.
Factorise: 54p3 - 250q3.
Simplify: (a - b)3 - (a3 - b3)