Advertisements
Advertisements
प्रश्न
Simplify:
\[\frac{3 x^2 - x - 2}{x^2 - 7x + 12} \div \frac{3 x^2 - 7x - 6}{x^2 - 4}\]
उत्तर
It is known that,
a3 − b3 = (a − b)(a2 + ab + b2)
`(3x^2 - x - 2)/(x^2 - 7x + 12) xx (x^2 - 4)/(3x^2 - 7x - 6)`
= `(3x^2 - 3x + 2x - 2)/(x^2 - 4x - 3x + 12) xx (x^2 - 2^2)/(3x^2 - 9x + 2x - 6)`
= `(3x(x - 1) + 2(x - 1))/(x(x - 4) - 3(x - 4)) xx ((x + 2)(x - 2))/(3x(x - 3) + 2(x - 3))`
= `((x - 1)(3x + 2))/((x - 4)(x - 3)) xx ((x + 2)(x - 2))/((x - 3)(3x + 2))`
= `((x - 1)(x + 2)(x - 2))/((x - 4)(x - 3)^2)`
संबंधित प्रश्न
Simplify:
\[\frac{m^2 - n^2}{\left( m + n \right)^2} \times \frac{m^2 + mn + n^2}{m^3 - n^3}\]
Simplify:
\[\frac{a^2 + 10a + 21}{a^2 + 6a - 7} \times \frac{a^2 - 1}{a + 3}\]
Simplify:
\[\frac{4 x^2 - 11x + 6}{16 x^2 - 9}\]
Simplify:
\[\frac{a^3 - 27}{5 a^2 - 16a + 3} \div \frac{a^2 + 3a + 9}{25 a^2 - 1}\]
Factorise:
y3 − 27
Factorise:
64x3 − 729y3
Simplify:
(3a + 5b)3 − (3a − 5b)3
Simplify:
(3xy − 2ab)3 − (3xy + 2ab)3
Factorise: `a^3 - 1/(a^3)`
Factorise the following:
27x3 – 8y3