Advertisements
Advertisements
Question
Simplify:
\[\frac{1 - 2x + x^2}{1 - x^3} \times \frac{1 + x + x^2}{1 + x}\]
Solution
It is known that,
a2 − b2 = (a + b) (a − b)
a3 − b3 = (a − b)(a2 + ab + b2)
\[\ \frac{1 - 2x + x^2}{1 - x^3} \times \frac{1 + x + x^2}{1 + x}\]
\[ = \frac{1 - x - x + x^2}{\left(1 \right)^3 - \left(x \right)^3} \times \frac{1 + x + x^2}{1 + x}\]
\[ = \frac{1\left(1 - x \right) - x\left(1 - x \right)}{\left(1 - x \right)\left\{ \left(1 \right)^2 + \left(1 \right) \times \left( x \right) + \left(x \right)^2 \right\}} \times \frac{\left(1 + x + x^2 \right)}{1 + x}\]
\[ = \frac{\left(1 - x \right)\left( 1 - x \right)}{\left(1 - x \right)\left(1 + x + x^2 \right)} \times \frac{\left(1 + x + x^2 \right)}{\left(1 + x \right)}\]
\[ = \frac{1 - x}{1 + x}\]
RELATED QUESTIONS
Simplify:
\[\frac{x^2 - 5x - 24}{\left( x + 3 \right)\left( x + 8 \right)} \times \frac{x^2 - 64}{\left( x - 8 \right)^2}\]
Factorise:
y3 − 27
Factorise:
125y3 − 1
Factorise:
`16a^3 - 128/b^3`
Simplify:
(x + y)3 − (x − y)3
Simplify:
(3a + 5b)3 − (3a − 5b)3
Simplify:
p3 − (p + 1)3
Simplify: (2x + 3y)3 - (2x - 3y)3
Factorise the following:
27x3 – 8y3
Factorise the following:
a6 – 64