English
Maharashtra State BoardSSC (English Medium) 8th Standard

Simplify: 1−2x+x21−x3×1+x+x21+x - Marathi (Second Language) [मराठी (द्वितीय भाषा)]

Advertisements
Advertisements

Question

Simplify:

\[\frac{1 - 2x + x^2}{1 - x^3} \times \frac{1 + x + x^2}{1 + x}\]

Sum

Solution

It is known that,

a2 − b= (a + b) (a − b)

a3 − b3 = (a − b)(a2 + ab + b2)

\[\  \frac{1 - 2x + x^2}{1 - x^3} \times \frac{1 + x + x^2}{1 + x}\]

\[ = \frac{1 - x - x + x^2}{\left(1 \right)^3 - \left(x \right)^3} \times \frac{1 + x + x^2}{1 + x}\]

\[ = \frac{1\left(1 - x \right) - x\left(1 - x \right)}{\left(1 - x \right)\left\{ \left(1 \right)^2 + \left(1 \right) \times \left( x \right) + \left(x \right)^2 \right\}}   \times   \frac{\left(1 + x + x^2 \right)}{1 + x}\]

\[ = \frac{\left(1 - x \right)\left( 1 - x \right)}{\left(1 - x \right)\left(1 + x + x^2 \right)} \times \frac{\left(1 + x + x^2 \right)}{\left(1 + x \right)}\]

\[ = \frac{1 - x}{1 + x}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Factorisation of Algebraic expressions - Practice Set 6.4 [Page 33]

APPEARS IN

Balbharati Mathematics [English] 8 Standard Maharashtra State Board
Chapter 6 Factorisation of Algebraic expressions
Practice Set 6.4 | Q 8 | Page 33
Balbharati Integrated 8 Standard Part 2 [English Medium] Maharashtra State Board
Chapter 3.1 Factorisation of Algebraic expressions
Practice Set 6.4 | Q 1. (8) | Page 48
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×