मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता ८ वी

Simplify: 1−2x+x21−x3×1+x+x21+x - Marathi (Second Language) [मराठी (द्वितीय भाषा)]

Advertisements
Advertisements

प्रश्न

Simplify:

\[\frac{1 - 2x + x^2}{1 - x^3} \times \frac{1 + x + x^2}{1 + x}\]

बेरीज

उत्तर

It is known that,

a2 − b= (a + b) (a − b)

a3 − b3 = (a − b)(a2 + ab + b2)

\[\  \frac{1 - 2x + x^2}{1 - x^3} \times \frac{1 + x + x^2}{1 + x}\]

\[ = \frac{1 - x - x + x^2}{\left(1 \right)^3 - \left(x \right)^3} \times \frac{1 + x + x^2}{1 + x}\]

\[ = \frac{1\left(1 - x \right) - x\left(1 - x \right)}{\left(1 - x \right)\left\{ \left(1 \right)^2 + \left(1 \right) \times \left( x \right) + \left(x \right)^2 \right\}}   \times   \frac{\left(1 + x + x^2 \right)}{1 + x}\]

\[ = \frac{\left(1 - x \right)\left( 1 - x \right)}{\left(1 - x \right)\left(1 + x + x^2 \right)} \times \frac{\left(1 + x + x^2 \right)}{\left(1 + x \right)}\]

\[ = \frac{1 - x}{1 + x}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Factorisation of Algebraic expressions - Practice Set 6.4 [पृष्ठ ३३]

APPEARS IN

बालभारती Mathematics [English] 8 Standard Maharashtra State Board
पाठ 6 Factorisation of Algebraic expressions
Practice Set 6.4 | Q 8 | पृष्ठ ३३
बालभारती Integrated 8 Standard Part 2 [English Medium] Maharashtra State Board
पाठ 3.1 Factorisation of Algebraic expressions
Practice Set 6.4 | Q 1. (8) | पृष्ठ ४८
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×