Advertisements
Advertisements
प्रश्न
Simplify:
\[\frac{1 - 2x + x^2}{1 - x^3} \times \frac{1 + x + x^2}{1 + x}\]
उत्तर
It is known that,
a2 − b2 = (a + b) (a − b)
a3 − b3 = (a − b)(a2 + ab + b2)
\[\ \frac{1 - 2x + x^2}{1 - x^3} \times \frac{1 + x + x^2}{1 + x}\]
\[ = \frac{1 - x - x + x^2}{\left(1 \right)^3 - \left(x \right)^3} \times \frac{1 + x + x^2}{1 + x}\]
\[ = \frac{1\left(1 - x \right) - x\left(1 - x \right)}{\left(1 - x \right)\left\{ \left(1 \right)^2 + \left(1 \right) \times \left( x \right) + \left(x \right)^2 \right\}} \times \frac{\left(1 + x + x^2 \right)}{1 + x}\]
\[ = \frac{\left(1 - x \right)\left( 1 - x \right)}{\left(1 - x \right)\left(1 + x + x^2 \right)} \times \frac{\left(1 + x + x^2 \right)}{\left(1 + x \right)}\]
\[ = \frac{1 - x}{1 + x}\]
संबंधित प्रश्न
Simplify:
\[\frac{8 x^3 - 27 y^3}{4 x^2 - 9 y^2}\]
Simplify:
\[\frac{m^2 - n^2}{\left( m + n \right)^2} \times \frac{m^2 + mn + n^2}{m^3 - n^3}\]
Simplify:
\[\frac{4 x^2 - 11x + 6}{16 x^2 - 9}\]
Factorise:
y3 − 27
Factorise:
27m3 − 216n3
Factorise:
`16a^3 - 128/b^3`
Simplify:
(x + y)3 − (x − y)3
Factorise: x3 - 8y3
Factorise: 54p3 - 250q3.
Factorise: `a^3 - 1/(a^3)`