Advertisements
Advertisements
प्रश्न
Factorise:
`16a^3 - 128/b^3`
बेरीज
उत्तर
It is known that,
a3 − b3 = (a − b)(a2 + ab + b2)
`16a^3 - 128/b^3`
= `16[a^3 - 8/b^3]`
= `16[(a)^3 - (2/b)^3]`
= `16[(a - 2/b) {(a)^2 + (a) xx (2/b) + (2/b)^2}]`
= `16(a - 2/b) (a^2 + (2a)/b + 4/b^2)`
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
संबंधित प्रश्न
Simplify:
\[\frac{m^2 - n^2}{\left( m + n \right)^2} \times \frac{m^2 + mn + n^2}{m^3 - n^3}\]
Simplify:
\[\frac{a^2 + 10a + 21}{a^2 + 6a - 7} \times \frac{a^2 - 1}{a + 3}\]
Simplify:
\[\frac{x^2 - 5x - 24}{\left( x + 3 \right)\left( x + 8 \right)} \times \frac{x^2 - 64}{\left( x - 8 \right)^2}\]
Factorise:
8p3 −\[\frac{27}{p^3}\]
Simplify:
(a + b)3 − a3 − b3
Simplify:
p3 − (p + 1)3
Factorise: `a^3 - 1/(a^3)`
Simplify: (2x + 3y)3 - (2x - 3y)3
Factorise the following:
27x3 – 8y3
Factorise the following:
a6 – 64