Advertisements
Advertisements
प्रश्न
Simplify:
\[\frac{m^2 - n^2}{\left( m + n \right)^2} \times \frac{m^2 + mn + n^2}{m^3 - n^3}\]
उत्तर
We know that,
a3 + b3 = (a + b)(a2 − ab + b2)
a3 − b3 = (a − b)(a2 + ab + b2)
a2 − b2= (a + b) (a − b)
\[\frac{m^2 - n^2}{\left( m + n \right)^2} \times \frac{m^2 + mn + n^2}{m^3 - n^3}\]
\[ = \frac{\left( m + n \right)\left( m - n \right)}{\left( m + n \right)\left( m + n \right)} \times \frac{\left( m^2 + mn + n^2 \right)}{\left( m - n \right)\left( m^2 + mn + n^2 \right)}\]
\[= \frac{1}{m + n}\]
संबंधित प्रश्न
Simplify:
\[\frac{8 x^3 - 27 y^3}{4 x^2 - 9 y^2}\]
Simplify:
\[\frac{x^2 - 5x - 24}{\left( x + 3 \right)\left( x + 8 \right)} \times \frac{x^2 - 64}{\left( x - 8 \right)^2}\]
Factorise:
y3 − 27
Factorise:
27m3 − 216n3
Simplify:
(3a + 5b)3 − (3a − 5b)3
Simplify:
(3xy − 2ab)3 − (3xy + 2ab)3
Factorise: 27p3 - 125q3.
Factorise: `a^3 - 1/(a^3)`
Simplify: (2x + 3y)3 - (2x - 3y)3
Factorise the following:
27x3 – 8y3