Advertisements
Advertisements
Question
Factorise:
`16a^3 - 128/b^3`
Sum
Solution
It is known that,
a3 − b3 = (a − b)(a2 + ab + b2)
`16a^3 - 128/b^3`
= `16[a^3 - 8/b^3]`
= `16[(a)^3 - (2/b)^3]`
= `16[(a - 2/b) {(a)^2 + (a) xx (2/b) + (2/b)^2}]`
= `16(a - 2/b) (a^2 + (2a)/b + 4/b^2)`
shaalaa.com
Is there an error in this question or solution?
RELATED QUESTIONS
Simplify:
\[\frac{x^2 - 5x - 24}{\left( x + 3 \right)\left( x + 8 \right)} \times \frac{x^2 - 64}{\left( x - 8 \right)^2}\]
Simplify:
\[\frac{3 x^2 - x - 2}{x^2 - 7x + 12} \div \frac{3 x^2 - 7x - 6}{x^2 - 4}\]
Simplify:
\[\frac{4 x^2 - 11x + 6}{16 x^2 - 9}\]
Simplify:
\[\frac{a^3 - 27}{5 a^2 - 16a + 3} \div \frac{a^2 + 3a + 9}{25 a^2 - 1}\]
Factorise:
y3 − 27
Simplify:
(3a + 5b)3 − (3a − 5b)3
Simplify:
(a + b)3 − a3 − b3
Factorise: x3 - 8y3
Factorise: `a^3 - 1/(a^3)`
Factorise the following:
27x3 – 8y3