Advertisements
Advertisements
Question
Simplify:
\[\frac{x^2 - 5x - 24}{\left( x + 3 \right)\left( x + 8 \right)} \times \frac{x^2 - 64}{\left( x - 8 \right)^2}\]
Solution
It is known that,
a2 − b2 = (a + b) (a − b)
a3 − b3 = (a − b)(a2 + ab + b2)
\[\ \frac{x^2 - 5x - 24}{\left( x + 3 \right)\left( x + 8 \right)} \times \frac{x^2 - 64}{\left( x - 8 \right)^2}\]
\[ = \frac{x^2 - 8x + 3x - 24}{\left( x + 3 \right)\left( x + 8 \right)} \times \frac{\left( x \right)^2 - \left( 8 \right)^2}{\left( x - 8 \right)^2}\]
\[ = \frac{x\left( x - 8 \right) + 3\left( x - 8 \right)}{\left( x + 3 \right)\left( x + 8 \right)} \times \frac{\left( x + 8 \right)\left( x - 8 \right)}{\left( x - 8 \right)\left( x - 8 \right)}\]
\[ = \frac{\left( x + 3 \right)\left( x - 8 \right)}{\left( x + 3 \right)\left( x + 8 \right)} \times \frac{\left( x + 8 \right)\left( x - 8 \right)}{\left( x - 8 \right)\left( x - 8 \right)}\]
= 1
RELATED QUESTIONS
Simplify:
\[\frac{a^2 + 10a + 21}{a^2 + 6a - 7} \times \frac{a^2 - 1}{a + 3}\]
Simplify:
\[\frac{3 x^2 - x - 2}{x^2 - 7x + 12} \div \frac{3 x^2 - 7x - 6}{x^2 - 4}\]
Simplify:
\[\frac{4 x^2 - 11x + 6}{16 x^2 - 9}\]
Factorise:
`16a^3 - 128/b^3`
Simplify:
p3 − (p + 1)3
Simplify:
(3xy − 2ab)3 − (3xy + 2ab)3
Factorise: 54p3 - 250q3.
Simplify: (2x + 3y)3 - (2x - 3y)3
Factorise the following:
27x3 – 8y3
Factorise the following:
a6 – 64