Advertisements
Advertisements
Question
Simplify:
p3 − (p + 1)3
Solution 1
It is known that,
a3 − b3 = (a − b)(a2 + ab + b2)
p3 − (p + 1)3
= {p − (p + 1)} {(p)2 + (p + 1)2 + (p) × (p + 1)}
= (−1) (p2 + p2 + 1 + 2p + p2 + p)
= (−1)(3p2 + 3p + 1)
= −3p2 − 3p − 1
Solution 2
p3 − (p + 1)3
We know that,
(a + b)3 = a3 + 3a2b + 3ab2 + b3
= p3 − (p3 + 3p2 + 3p + 1)
= p3 − p3 − 3p2 − 3p − 1
= −3p2 − 3p − 1
RELATED QUESTIONS
Simplify:
\[\frac{a^2 + 10a + 21}{a^2 + 6a - 7} \times \frac{a^2 - 1}{a + 3}\]
Simplify:
\[\frac{x^2 - 5x - 24}{\left( x + 3 \right)\left( x + 8 \right)} \times \frac{x^2 - 64}{\left( x - 8 \right)^2}\]
Simplify:
\[\frac{4 x^2 - 11x + 6}{16 x^2 - 9}\]
Simplify:
\[\frac{1 - 2x + x^2}{1 - x^3} \times \frac{1 + x + x^2}{1 + x}\]
Factorise:
8p3 −\[\frac{27}{p^3}\]
Factorise:
`16a^3 - 128/b^3`
Simplify:
(3a + 5b)3 − (3a − 5b)3
Simplify:
(3xy − 2ab)3 − (3xy + 2ab)3
Factorise: 54p3 - 250q3.
Factorise the following:
27x3 – 8y3