Advertisements
Advertisements
Question
Factorise the following:
a6 – 64
Solution
a6 – 64 = a6 – 26
= (a2)3 – (22)3 ...[a3 – b3 = (a – b) + (a2 + ab + b2)]
= (a2 – 22) [(a2)2 + (a2) (22) + (22)2]
= (a + 2) (a – 2) (a4 + 4a2 + 16)
= (a + 2) (a – 2) [(a2)2 + 42 + 8a2 – 4a2]
= (a + 2) (a – 2) [(a2 + 4)2 – (2a)2] ......{a2 – b2 = (a + b) (a – b)}
= (a + 2) (a – 2) (a2 + 4 + 2a) (a2 + 4 – 2a)
= (a + 2) (a – 2) (a2 + 2a + 4) (a2 – 2a + 4)
APPEARS IN
RELATED QUESTIONS
Simplify:
\[\frac{m^2 - n^2}{\left( m + n \right)^2} \times \frac{m^2 + mn + n^2}{m^3 - n^3}\]
Simplify:
\[\frac{a^2 + 10a + 21}{a^2 + 6a - 7} \times \frac{a^2 - 1}{a + 3}\]
Simplify:
\[\frac{3 x^2 - x - 2}{x^2 - 7x + 12} \div \frac{3 x^2 - 7x - 6}{x^2 - 4}\]
Simplify:
\[\frac{4 x^2 - 11x + 6}{16 x^2 - 9}\]
Simplify:
\[\frac{a^3 - 27}{5 a^2 - 16a + 3} \div \frac{a^2 + 3a + 9}{25 a^2 - 1}\]
Factorise:
125y3 − 1
Simplify:
(x + y)3 − (x − y)3
Simplify:
(3a + 5b)3 − (3a − 5b)3
Simplify:
(a + b)3 − a3 − b3
Simplify: (2x + 3y)3 - (2x - 3y)3