Advertisements
Advertisements
प्रश्न
Find : (a + b)(a + b)(a + b)
उत्तर
(a + b)(a + b)(a + b)
= (a × a + a × b + b × a + b × b)(a + b)
= (a2 + ab + ab + b2)(a + b)
= (a2 + b2 + 2ab)(a + b)
= a2 × a + a2 × b + b2 × a + b2 × b + 2ab × a + 2ab × b
= a3 + a2 b + ab2 + b3 + 2a2b + 2ab2
= a3 + b3 + 3a2b + 3ab2
APPEARS IN
संबंधित प्रश्न
Simplify : ( x - 6 )( x - 4 )( x - 2 )
Simplify : ( x + 6 )( x - 4 )( x - 2 )
Simplify using following identity : `( a +- b )(a^2 +- ab + b^2) = a^3 +- b^3`
( 2x + 3y )( 4x2 + 6xy + 9y2 )
Find : (a - b)(a - b)(a - b)
If a + b = 11 and a2 + b2 = 65; find a3 + b3.
If x + 5y = 10; find the value of x3 + 125y3 + 150xy - 1000.
Using suitable identity, evaluate (104)3
Using suitable identity, evaluate (97)3
Evaluate :
`[0.8 xx 0.8 xx 0.8 + 0.5 xx 0.5 xx 0.5]/[0.8 xx 0.8 - 0.8 xx 0.5 + 0.5 xx .5]`
Evaluate :
`[1.2 xx 1.2 + 1.2 xx 0.3 + 0.3 xx 0.3 ]/[ 1.2 xx 1.2 xx 1.2 - 0.3 xx 0.3 xx 0.3]`