हिंदी

Find a Unit Vector Perpendicular to Each of the Vectors → a + → B and → a − → B Where → a = 3 ˆ I + 2 ˆ J + 2 ˆ K and → B = I + 2 ˆ J − 2 ˆ K - Mathematics

Advertisements
Advertisements

प्रश्न

Find a unit vector perpendicular to each of the vectors `veca + vecb  "and"  veca - vecb  "where"  veca = 3hati + 2hatj + 2hatk and vecb = i + 2hatj - 2hatk` 

योग

उत्तर

Let the unit vector be λ

λ = `λ_1hati + λ_2hatj + λ_3hatk`

Now, `veca + vecb =  4hati + 4hatj + 0hatk`

`veca - vecb =  2hati + 0hatj + 4hatk`

Now, `(λ_1hati + λ_2hatj + λ_3hatk) . ( 4hati + 4hatj + 0hatk) = 0`

⇒  4λ1 + 4λ2 = 0

⇒ λ1 = λ                             ...(i)

`(λ_1hati + λ_2hatj + λ_3hatk) . (2hati + 0hatj + 4hatk)= 0`

⇒ ( 2λ1 + 4λ3 ) = 0

⇒ λ1 = - 2λ3                     ...(ii)

Now, λ1 = λ2  and λ1 = - 2λ3
λ2 = - λ1

`λ_3 = - (1)/(2) λ_1`

Let  λ1 = c (say)

λ2 = - c

λ3 = `- (1)/(2)` c

`λ = chati - chatj - (1)/(2)chatk`

 `hatλ = λ/|λ| = ( chati - chatj - (1)/(2) chatk)/sqrt(c^2 + (-c)^2 + (1/2 c)^2) = (c( hati - hatj - (1)/(2) hatk))/((3c)/2)`

`hatλ = (2)/(3) ( hati - hatj - (1)/(2) hatk)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If D, E, F are the mid-points of the sides BC, CA and AB respectively of a triangle ABC, write the value of \[\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} .\]


Write the position vector of a point dividing the line segment joining points A and B with position vectors \[\vec{a}\] and \[\vec{b}\] externally in the ratio 1 : 4, where \[\overrightarrow{a} = 2 \hat{i} + 3 \hat{j} + 4 \hat{k} \text{ and }\overrightarrow{b} = - \hat{i} + \hat{j} + \hat{k} .\]


If \[\overrightarrow{a} = \hat{i} + \hat{j} , \vec{b} = \hat{j} + \hat{k} \text{ and }\vec{c} = \hat{k} + \hat{i} ,\] write unit vectors parallel to \[\overrightarrow{a} + \overrightarrow{b} - 2 \overrightarrow{c} .\]


Find the position vector of the mid-point of the line segment AB, where A is the point (3, 4, −2) and B is the point (1, 2, 4).


Write a unit vector in the direction of the sum of the vectors \[\overrightarrow{a} = 2 \hat{i} + 2 \hat{j} - 5 \hat{k}\] and \[\overrightarrow{b} = 2 \hat{i} + \hat{j} - 7 \hat{k}\].


If \[\vec{a} , \vec{b} , \vec{c}\] are three non-zero vectors, no two of which are collinear and the vector \[\vec{a} + \vec{b}\] is collinear with \[\vec{c} , \vec{b} + \vec{c}\] is collinear with \[\vec{a} ,\] then \[\vec{a} + \vec{b} + \vec{c} =\]

 


In Figure, which of the following is not true?


Select the correct option from the given alternatives:

The value of `hat"i".(hat"j" xx hat"k") + hat"j".(hat"i" xx hat"k") + hat"k".(hat"i" xx hat"j")` is


If two sides of a triangle are `hat"i" + 2hat"j" and hat"i" + hat"k"`, find the length of the third side.


Find the unit vectors that are parallel to the tangent line to the parabola y = x2 at the point (2, 4).


Find the acute angle between the curves at their points of intersection, y = x2, y = x3.


For 0 < θ < π, if A = `[(costheta, -sintheta), (sintheta, costheta)]`, then ______ 


Find a vector of magnitude 11 in the direction opposite to that of `vec"PQ"` where P and Q are the points (1, 3, 2) and (–1, 0, 8), respectively.


The vector with initial point P (2, –3, 5) and terminal point Q(3, –4, 7) is ______.


The values of k for which `|"k"vec"a"| < |vec"a"|` and `"k"vec"a" + 1/2 vec"a"` is parallel to `vec"a"` holds true are ______.


Classify the following as scalar and vector quantity.

Distance


Classify the following as scalar and vector quantity.

Force


Classify the following as scalar and vector quantity.

Velocity


In Figure, identify the following vector.

 

Collinear but not equal


`bara, barb` and `barc` are three vectors such that `veca + vecb + vecc` 20,  `|bara| = 1, |barb| = 2` and `|barc| = 3`. Then `bara. barb + barb.barc + bar(c.a)` is equal to


Let `bara, barb` and `barc` be three vectors, then `bara xx (barb xx barc) = (bara xx barb) xx barc` if


If `veca` and `vecb` are two collinear vectors then which of the following are incorrect.


Find `|vecx|`, if for a unit vector `veca, (vecx - veca) * (vecx + veca)` = 12


If `veca = hati - hatj + 7hatk` and `vecb = 5hati - hatj + λhatk`, then find the value of λ so that the vectors `veca + vecb` and `veca - vecb` are orthogonal.


If points P(4, 5, x), Q(3, y, 4) and R(5, 8, 0) are collinear, then the value of x + y is ______.


Unit vector along `vec(PQ)`, where coordinates of P and Q respectively are (2, 1, – 1) and (4, 4, – 7), is ______.


In the triangle PQR, `bar("P""Q")`= `2 bar"a"` and `bar ("QR")` = `2 barb`.The mid - point of PR is M. Find following vector in term of  `bar a ` and `barb.`

  1. `bar("P""R")` 
  2. `bar("P""M")`
  3. `bar("Q""M")`

Check whether the vectors `2hati + 2hatj + 3hatk, -3hati + 3hatj + 2hatk` and `3hati + 4hatk` form a triangle or not.


In the triangle PQR, `bar(PQ)=2bara` and `bar(QR)=2barb`. The mid-point of PR is M. Find following vectors in terms of `bara and barb`.

(i) `bar(PR)`  (ii) `bar(PM)`  (iii) `bar(QM)`


Check whether the vectors `2hati + 2hatj + 3hatk, -3hati + 3hatj + 2hatk and 3hati + 4hatk` form a triangle or not.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×