मराठी

Find a Unit Vector Perpendicular to Each of the Vectors → a + → B and → a − → B Where → a = 3 ˆ I + 2 ˆ J + 2 ˆ K and → B = I + 2 ˆ J − 2 ˆ K - Mathematics

Advertisements
Advertisements

प्रश्न

Find a unit vector perpendicular to each of the vectors `veca + vecb  "and"  veca - vecb  "where"  veca = 3hati + 2hatj + 2hatk and vecb = i + 2hatj - 2hatk` 

बेरीज

उत्तर

Let the unit vector be λ

λ = `λ_1hati + λ_2hatj + λ_3hatk`

Now, `veca + vecb =  4hati + 4hatj + 0hatk`

`veca - vecb =  2hati + 0hatj + 4hatk`

Now, `(λ_1hati + λ_2hatj + λ_3hatk) . ( 4hati + 4hatj + 0hatk) = 0`

⇒  4λ1 + 4λ2 = 0

⇒ λ1 = λ                             ...(i)

`(λ_1hati + λ_2hatj + λ_3hatk) . (2hati + 0hatj + 4hatk)= 0`

⇒ ( 2λ1 + 4λ3 ) = 0

⇒ λ1 = - 2λ3                     ...(ii)

Now, λ1 = λ2  and λ1 = - 2λ3
λ2 = - λ1

`λ_3 = - (1)/(2) λ_1`

Let  λ1 = c (say)

λ2 = - c

λ3 = `- (1)/(2)` c

`λ = chati - chatj - (1)/(2)chatk`

 `hatλ = λ/|λ| = ( chati - chatj - (1)/(2) chatk)/sqrt(c^2 + (-c)^2 + (1/2 c)^2) = (c( hati - hatj - (1)/(2) hatk))/((3c)/2)`

`hatλ = (2)/(3) ( hati - hatj - (1)/(2) hatk)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March)

APPEARS IN

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

if `veca = 2hati - hatj - 2hatk " and " vecb = 7hati + 2hatj - 3hatk`, , then express `vecb` in the form of `vecb = vec(b_1) + vec(b_2)`, where `vec(b_1)`  is parallel to `veca` and `vec(b_2)` is perpendicular to `veca`


If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] represent the sides of a triangle taken in order, then write the value of \[\vec{a} + \vec{b} + \vec{c} .\]


If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] are position vectors of the vertices A, B and C respectively, of a triangle ABC, write the value of \[\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} .\]


Write a unit vector making equal acute angles with the coordinates axes.


Write a unit vector in the direction of \[\overrightarrow{b} = 2 \hat{i} + \hat{j} + 2 \hat{k}\].


If \[\overrightarrow{a} = x \hat{i} + 2 \hat{j} - z \hat{k}\text{ and }\overrightarrow{b} = 3 \hat{i} - y \hat{j} + \hat{k}\]  are two equal vectors, then write the value of x + y + z.


Write a unit vector in the direction of the sum of the vectors \[\overrightarrow{a} = 2 \hat{i} + 2 \hat{j} - 5 \hat{k}\] and \[\overrightarrow{b} = 2 \hat{i} + \hat{j} - 7 \hat{k}\].


If OACB is a parallelogram with \[\overrightarrow{OC} = \vec{a}\text{ and }\overrightarrow{AB} = \vec{b} ,\] then \[\overrightarrow{OA} =\]


Find the vector equation of the plane through the line of intersection of the planes x + y + z = 1 and 2x + 3y + 4z = 5 which is perpendicular to the plane x – y + z = 0. Hence find whether the plane thus obtained contains the line \[\frac{x + 2}{5} = \frac{y - 3}{4} = \frac{z}{5}\] or not.


Find the components along the coordinate axes of the position vector of the following point :

R(–11, –9)


In Figure, which of the following is not true?


Find the area of the traingle with vertices (1, 1, 0), (1, 0, 1) and (0, 1, 1).


In a parallelogram ABCD, diagonal vectors are `bar"AC" = 2hat"i" + 3hat"j" + 4hat"k" and bar"BD" = - 6hat"i" + 7hat"j" - 2hat"k"`, then find the adjacent side vectors `bar"AB" and bar"AD"`.


Find the unit vectors that are parallel to the tangent line to the parabola y = x2 at the point (2, 4).


If `bar"a", bar"b", bar"c"` are unit vectors such that `bar"a" + bar"b" + bar"c" = bar0,` then find the value of `bar"a".bar"b" + bar"b".bar"c" + bar"c".bar"a".`


Express the vector `bar"a" = 5hat"i" - 2hat"j" + 5hat"k"` as a sum of two vectors such that one is parallel to the vector `bar"b" = 3hat"i" + hat"k"` and other is perpendicular to `bar"b"`.


For any vectors `bar"a", bar"b", bar"c"` show that `(bar"a" + bar"b" + bar"c") xx bar"c" + (bar"a" + bar"b" + bar"c") xx bar"b" + (bar"b" - bar"c") xx bar"a" = 2bar"a" xx bar"c"`


Find the volume of the parallelopiped spanned by the diagonals of the three faces of a cube of side a that meet at one vertex of the cube.


The XZ plane divides the line segment joining the points (3, 2, b) and (a, -4, 3) in the ratio ______.


The 2 vectors `hat"j" + hat"k"` and `3hat"i" - hat"j" + 4hat"k"` represents the two sides AB and AC, respectively of a ∆ABC. The length of the median through A is ______.


If `vec"a" = hat"i" + hat"j" + 2hat"k"` and `hat"b" = 2hat"i" + hat"j" - 2hat"k"`, find the unit vector in the direction of `2vec"a" - vec"b"`


If `vec"a", vec"b", vec"c"` are unit vectors such that `vec"a" + vec"b" + vec"c"` = 0, then the value of `vec"a" * vec"b" + vec"b" * vec"c" + vec"c" * vec"a"` is ______.


If `vec"a"` is any non-zero vector, then `(vec"a" .hat"i")hat"i" + (vec"a".hat"j")hat"j" + (vec"a".hat"k")hat"k"` equals ______.


If `|vec"a" + vec"b"| = |vec"a" - vec"b"|`, then the vectors `vec"a"` and `vec"b"` are orthogonal.


Classify the following measures as scalar and vector.

2 meters north-west


In Figure, identify the following vector.

Equal


In the triangle PQR, `bar(PQ)=2bara` and `bar(QR)=2barb`. The mid-point of PR is M. Find following vectors in terms of `bara and barb`.

(i) `bar(PR)`  (ii) `bar(PM)`  (iii) `bar(QM)`


In the triangle PQR, `bar(PQ)` = 2`bara` and `bar(QR)` = 2`barb`. The midpoint of PR is M. Find the following vectors in terms of `bara` and `barb`.

(i) `bar(PR)` (ii) `bar(PM)` (iii) `bar(QM)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×