मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Express the vector bar"A" = 5hat"i" - 2hat"j" + 5hat"k" as a sum of two vectors such that one is parallel to the vector bar"b" = 3hat"i" + hat"k" and other is perpendicular to bar"b". - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Express the vector `bar"a" = 5hat"i" - 2hat"j" + 5hat"k"` as a sum of two vectors such that one is parallel to the vector `bar"b" = 3hat"i" + hat"k"` and other is perpendicular to `bar"b"`.

बेरीज

उत्तर

Let `bar"a" = bar"c" + bar"d"`, where `bar"c"` is parallel to `bar"b" and bar"d"` is perpendicular to `bar"b"`.

Since, `bar"c"` is parallel to `bar"b", bar"c" = "m"bar"b"`, where m is a scalar.

∴ `bar"c" = "m"(3hat"i" + hat"k")`

i.e. `bar"c" = 3"m"hat"i" + "m"hat"k"`

Let `bar"d" = "x"hat"i" + "y"hat"j"+ zhat"k"`

Since, `bar"d"` is perpendicular to `bar"b" = 3hat"i" + hat"k", bar"d".bar"b" = 0`

∴ `("x"hat"i" + "y"hat"j" + "z"hat"k").(3hat"i" + hat"k") = 0`

∴ 3x + z = 0

∴ z = - 3x

∴ `bar"d" = "x"hat"i" + "y"hat"k" - 3"x"hat"k"`

Now, `bar"a" = bar"c" + bar"d"` gives

∴ `5hat"i" - 2hat"j" + 5hat"k" = (3"m"hat"i" + "m"hat"k") + ("x"hat"i" + "y"hat"j" - 3"x"hat"k")`

`= (3"m" + "x")hat"i" + "y"hat"j" + ("m" - 3"x")hat"k"`

By equality of vectors

3m + x = 5          ....(1)

y = - 2

and m - 3x = 5         ......(2)

From (1) and (2)

3m + x = m - 3x

∴ 2m = - 4x

∴ m = - 2x

Substituting m = - 2x in (1), we get

∴ - 6x + x = 5

∴ - 5x = 5

∴ x = - 1

∴ m = - 2x = 2

∴ `bar"c" = 6hat"i" + 2hat"k"` is parallel to `bar"b" and bar"d" = - hat"i" - 2hat"j" + 3hat"k"` is perpendicular to `bar"b"`

Hence, `bar"a" = bar"c" + bar"d",  "where"  bar"c" = 6hat"i" + 2hat"k" and bar"d" = - hat"i" - 2hat"j" + 3hat"k"`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Vectors - Miscellaneous exercise 5 [पृष्ठ १९१]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 5 Vectors
Miscellaneous exercise 5 | Q II. 24) | पृष्ठ १९१

संबंधित प्रश्‍न

If \[\vec{a}\] and \[\vec{b}\] represent two adjacent sides of a parallelogram, then write vectors representing its diagonals.


If \[\overrightarrow{a}\], \[\overrightarrow{b}\], \[\overrightarrow{c}\] are the position vectors of the vertices of a triangle, then write the position vector of its centroid.


If a vector makes angles α, β, γ with OX, OY and OZ respectively, then write the value of sin2 α + sin2 β + sin2 γ.


Write the position vector of a point dividing the line segment joining points A and B with position vectors \[\vec{a}\] and \[\vec{b}\] externally in the ratio 1 : 4, where \[\overrightarrow{a} = 2 \hat{i} + 3 \hat{j} + 4 \hat{k} \text{ and }\overrightarrow{b} = - \hat{i} + \hat{j} + \hat{k} .\]


If \[\overrightarrow{a} = \hat{i} + 2 \hat{j} - 3 \hat{k} \text{ and }\overrightarrow{b} = 2 \hat{i} + 4 \hat{j} + 9 \hat{k} ,\]  find a unit vector parallel to \[\overrightarrow{a} + \overrightarrow{b}\].


If points A (60 \[\hat{i}\] + 3 \[\hat{j}\]), B (40 \[\hat{i}\] − 8 \[\hat{j}\]) and C (a \[\hat{i}\] − 52 \[\hat{j}\]) are collinear, then a is equal to


If ABCDEF is a regular hexagon, then \[\overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC}\] equals

 


Find the components along the coordinate axes of the position vector of the following point :

P(3, 2)


Find the distance from (4, - 2, 6) to each of the following:
(a) The XY-plane
(b) The YZ-plane
(c) The XZ-plane
(d) The X-axis
(e) The Y-axis
(f) The Z-axis.


In a parallelogram ABCD, diagonal vectors are `bar"AC" = 2hat"i" + 3hat"j" + 4hat"k" and bar"BD" = - 6hat"i" + 7hat"j" - 2hat"k"`, then find the adjacent side vectors `bar"AB" and bar"AD"`.


If P is orthocentre, Q is the circumcentre and G is the centroid of a triangle ABC, then prove that `bar"QP" = 3bar"QG"`.


Let bar"b" = 4hat"i" + 3hat"j" and bar"c" be two vectors perpendicular to each other in the XY-plane. Find the vector in the same plane having projection 1 and 2 along bar"b" and bar"c" respectively.


Show that no line in space can make angles `pi/6` and `pi/4` with X-axis and Y-axis.


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`(bar"a".bar"b").bar"c"`


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`bar"a".(bar"b" + bar"c")`


a and b are non-collinear vectors. If p = (2x + 1) a - band q = (x - 2)a +b are collinear vectors, then x = ______.


For any vector `overlinex` the value of `(overlinex xx hati)^2 + (overlinex xx hatj)^2 + (overlinex xx hatk)^2` is equal to ______


If the vectors `overlinea = 2hati - qhatj + 3hatk` and `overlineb = 4hati - 5hatj + 6hatk` are collinear, then the value of q is ______


For 0 < θ < π, if A = `[(costheta, -sintheta), (sintheta, costheta)]`, then ______ 


If the points (–1, –1, 2), (2, m, 5) and (3,11, 6) are collinear, find the value of m.


The vector with initial point P (2, –3, 5) and terminal point Q(3, –4, 7) is ______.


The area of the parallelogram whose adjacent sides are `hat"i" + hat"k"` and `2hat"i" + hat"j" + hat"k"` is ______.


If `|vec"a"|` = 8, `|vec"b"|` = 3 and `|vec"a" xx vec"b"|` = 12, then value of `vec"a" * vec"b"` is ______.


The vector `vec"a" + vec"b"` bisects the angle between the non-collinear vectors `vec"a"` and `vec"b"` if ______.


If `vec"a"` and `vec"b"` are adjacent sides of a rhombus, then `vec"a" * vec"b"` = 0


Classify the following measures as scalar and vector.

20 m/s2


Classify the following as scalar and vector quantity.

Velocity


Let `veca, vecb` and `vecc` be three unit vectors such that `veca xx (vecb xx vecc) = sqrt(3)/2 (vecb + vecc)`. If `vecb` is not parallel to `vecc`, then the angle between `veca` and `vecc` is


Four vectors `veca, vecb, vecc` and `vecx` satisfy the relation `(veca.vecx)vecb = vecc + vecx` where `vecb * veca` ≠ 1. The value of `vecx` in terms of `veca, vecb` and `vecc` is equal to


Let the vectors `vec(a)` such `vec(b)` that `|veca|` = 3 and `|vecb| = sqrt(2)/3`, then `veca xx vecb` is a unit vector if the angle between `veca` and `vecb` is


If points P(4, 5, x), Q(3, y, 4) and R(5, 8, 0) are collinear, then the value of x + y is ______.


In the triangle PQR, `bar("P""Q")`= `2 bar"a"` and `bar ("QR")` = `2 barb`.The mid - point of PR is M. Find following vector in term of  `bar a ` and `barb.`

  1. `bar("P""R")` 
  2. `bar("P""M")`
  3. `bar("Q""M")`

Check whether the vectors `2 hati + 2 hatj + 3 hatk, -3 hati + 3 hatj + 2 hatk  "and"  3 hati + 4 hatk`  from a triangle or not.


Check whether the vectors `2hati + 2hatj + 3hat k, -3hati + 3hatj + 2hat k` and `3hati + 4hatk` form a triangle or not.


Check whether the vectors`2hati+2hatj+3hatk,-3hati+3hatj+2hatk and 3hati +4hatk` form a triangle or not.


In the triangle PQR, `bar(PQ)` = `2bara` and `bar(QR)` = `2barb`. The mid-point of PR is M. Find following vectors in terms of `bara` and `barb`.

(i) `bar(PR)` (ii) `bar(PM)` (iii) `bar(QM)`


If `hata` is unit vector and `(2vecx - 3hata)*(2vecx + 3hata)` = 91, find the value of `|vecx|`.


Check whether the vectors `2hati+2hatj+3hatk,-3hati+3hatj+2hatk` and `3hati+4hatk` form a triangle or not.


Check whether the vectors `2hati + 2hatj +3hatk, - 3hati + 3hatj + 2hatk and 3hati + 4hatk` form a triangle or not. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×