मराठी

The vector aba→+b→ bisects the angle between the non-collinear vectors aa→ and bb→ if ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The vector `vec"a" + vec"b"` bisects the angle between the non-collinear vectors `vec"a"` and `vec"b"` if ______.

रिकाम्या जागा भरा

उत्तर

The vector `vec"a" + vec"b"` bisects the angle between the non-collinear vectors `vec"a"` and `vec"b"` if `vec"a" = vec"b"`.

Explanation:

If vector `vec"a" + vec"b"` bisects the angle between non-collinear vectors `vec"a"` and `vec"b"` then the angle between `vec"a" + vec"b"` and `vec"a"` is equal to the angle between `vec"a" + vec"b"` and `vec"b"`.

So, `cos  theta = (vec"a" * (vec"a" + vec"b"))/(|vec"a"||vec"a" + vec"b"|)`

= `(vec"a" * (vec"a" + vec"b"))/(|vec"a"| sqrt("a"^2 + "b"^2))`  ......(i)

Also, `cos theta = (vec"b"*(vec"a" + vec"b"))/(|vec"b"|*|vec"a" + vec"b"|)`  .....`[because theta  "is same"]`

= `(vec"b" * (vec"a" + vec"b"))/(|vec"b"| sqrt("a"^2 + "b"^2))`  ......(ii)

From equation (i) and equation (ii) we get,

`(vec"a" * (vec"a" + vec"b"))/(|vec"a"| sqrt("a"^2 + "b"^2)) = (vec"b" * (vec"a" + vec"b"))/(|vec"b"| sqrt("a"^2 + "b"^2))`

⇒ `vec"a"/|vec"a"| = vec"b"/|vec"b"|`

⇒ `hat"a" = hat"b"`

⇒ `vec"a" = vec"b"`

Hence, the required filler is `vec"a" = vec"b"`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Vector Algebra - Exercise [पृष्ठ २१८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 10 Vector Algebra
Exercise | Q 34 | पृष्ठ २१८

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If `veca=xhati+2hatj-zhatk and vecb=3hati-yhatj+hatk` are two equal vectors ,then write the value of x+y+z


If \[\vec{a}\] and \[\vec{b}\] are two non-collinear vectors such that \[x \vec{a} + y \vec{b} = \vec{0} ,\] then write the values of x and y.


Write a unit vector in the direction of the sum of the vectors \[\overrightarrow{a} = 2 \hat{i} + 2 \hat{j} - 5 \hat{k}\] and \[\overrightarrow{b} = 2 \hat{i} + \hat{j} - 7 \hat{k}\].


Write the position vector of the point which divides the join of points with position vectors \[3 \overrightarrow{a} - 2 \overrightarrow{b}\text{ and }2 \overrightarrow{a} + 3 \overrightarrow{b}\] in the ratio 2 : 1.


Let G be the centroid of ∆ ABC. If \[\overrightarrow{AB} = \vec{a,} \overrightarrow{AC} = \vec{b,}\] then the bisector \[\overrightarrow{AG} ,\] in terms of \[\vec{a}\text{ and }\vec{b}\] is


Find the components along the coordinate axes of the position vector of the following point :

Q(–5, 1)


Select the correct option from the given alternatives:

The value of `hat"i".(hat"j" xx hat"k") + hat"j".(hat"i" xx hat"k") + hat"k".(hat"i" xx hat"j")` is


Let `bara = hati - hatj, barb = hatj - hatk, barc = hatk - hati.` If `bard` is a unit vector such that `bara * bard = 0 = [(barb, barc, bard)]`, then `bard` equals ______.


If `bar"OA" = bar"a" and bar"OB" = bar"b",` then show that the vector along the angle bisector of ∠AOB is given by `bar"d" = lambda(bar"a"/|bar"a"| + bar"b"/|bar"b"|).`


A point P with position vector `(- 14hat"i" + 39hat"j" + 28hat"k")/5` divides the line joining A (1, 6, 5) and B in the ratio 3 : 2, then find the point B.


Find a unit vector perpendicular to the plane containing the point (a, 0, 0), (0, b, 0) and (0, 0, c). What is the area of the triangle with these vertices?


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`bar"a".(bar"b".bar"c")`


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`(bar"a".bar"b") xx (bar"c".bar"d")`


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`(bar"a".bar"b").bar"c"`


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`(bar"a".bar"b")bar"c"`


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`|bar"a"|(bar"b".bar"c")`


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`bar"a". bar"b" + bar"c"`


For any non-zero vectors a and b, [b a × b a] = ?


For 0 < θ < π, if A = `[(costheta, -sintheta), (sintheta, costheta)]`, then ______ 


If `vec"a" = 2hat"i" - hat"j" + hat"k", vec"b" = hat"i" + hat"j" - 2hat"k"` and `vec"c" = hat"i" + 3hat"j" - hat"k"`, find `lambda` such that `vec"a"` is perpendicular to `lambdavec"b" + vec"c"`.


If `|vec"a"|` = 8, `|vec"b"|` = 3 and `|vec"a" xx vec"b"|` = 12, then value of `vec"a" * vec"b"` is ______.


The 2 vectors `hat"j" + hat"k"` and `3hat"i" - hat"j" + 4hat"k"` represents the two sides AB and AC, respectively of a ∆ABC. The length of the median through A is ______.


Classify the following measures as scalar and vector.

40°


Classify the following measures as scalar and vector.

40 watt


Classify the following measures as scalar and vector.

20 m/s2


Which of the following measures as vector?


Check whether the vectors `2hati + 2hatj +3hatk, - 3hati + 3hatj + 2hatk and 3hati + 4hatk`  form a triangle or not. 


Check whether the vectors `2hati + 2hatj + 3hatk, -3hati + 3hatj + 2hatk and 3hati + 4hatk`  form a triangle or not. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×