मराठी

If → a and → B Represent Two Adjacent Sides of a Parallelogram, Then Write Vectors Representing Its Diagonals. - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\vec{a}\] and \[\vec{b}\] represent two adjacent sides of a parallelogram, then write vectors representing its diagonals.

बेरीज

उत्तर

Let \[\vec{a}\] and \[\vec{b}\] represents two adjacent sides of a parallelogram ABCD.
∴ \[AB = DC  \text{  and  }AD \hspace{0.167em} = BC\]
\[\Rightarrow \overrightarrow{DC} = \overrightarrow{AB} = \vec{a}\]   and   
\[\overrightarrow{AD} = \overrightarrow{BC} = \vec{b}\]
In \[\bigtriangleup ABC\] 
\[\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC} \]
\[ \Rightarrow \vec{a} + \vec{b} = \overrightarrow{AC}\]
In \[\bigtriangleup ABD\] 
\[\overrightarrow{AD} + \overrightarrow{DB} = \overrightarrow{AB} \]
\[ \Rightarrow \vec{b} + \overrightarrow{DB} = \vec{a} \]
\[ \Rightarrow \overrightarrow{DB} = \vec{a} - \vec{b}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: Algebra of Vectors - Very Short Answers [पृष्ठ ७५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 23 Algebra of Vectors
Very Short Answers | Q 6 | पृष्ठ ७५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If \[\vec{a}\] and \[\vec{b}\] are two non-collinear vectors such that \[x \vec{a} + y \vec{b} = \vec{0} ,\] then write the values of x and y.


If a vector makes angles α, β, γ with OX, OY and OZ respectively, then write the value of sin2 α + sin2 β + sin2 γ.


If G is the intersection of diagonals of a parallelogram ABCD and O is any point, then \[O \vec{A} + O \vec{B} + O \vec{C} + O \vec{D} =\] 


ABCD is a parallelogram with AC and BD as diagonals.
Then, \[\overrightarrow{AC} - \overrightarrow{BD} =\] 


Find the vector equation of the plane through the line of intersection of the planes x + y + z = 1 and 2x + 3y + 4z = 5 which is perpendicular to the plane x – y + z = 0. Hence find whether the plane thus obtained contains the line \[\frac{x + 2}{5} = \frac{y - 3}{4} = \frac{z}{5}\] or not.


In Figure, which of the following is not true?


Find the value of λ for which the four points with position vectors `6hat"i" - 7hat"j", 16hat"i" - 19hat"j" - 4hat"k" , lambdahat"j" - 6hat"k"  "and"  2hat"i" - 5hat"j" + 10hat"k"` are coplanar.


If` vec"a" = 2hat"i" + 3hat"j" + + hat"k", vec"b" = hat"i" - 2hat"j" + hat"k"  "and"  vec"c" = -3hat"i" + hat"j" + 2hat"k", "find" [vec"a" vec"b" vec"c"]`


Check whether the vectors `2hati + 2hatj + 3hatk, - 3hati + 3hatj + 2hatk` and `3hati + 4hatk` form a triangle or not.


Find the coordinates of the point which is located three units behind the YZ-plane, four units to the right of XZ-plane, and five units above the XY-plane.


Find the coordinates of the point which is located in the YZ-plane, one unit to the right of the XZ- plane, and six units above the XY-plane.


Let `bara = hati - hatj, barb = hatj - hatk, barc = hatk - hati.` If `bard` is a unit vector such that `bara * bard = 0 = [(barb, barc, bard)]`, then `bard` equals ______.


In a parallelogram ABCD, diagonal vectors are `bar"AC" = 2hat"i" + 3hat"j" + 4hat"k" and bar"BD" = - 6hat"i" + 7hat"j" - 2hat"k"`, then find the adjacent side vectors `bar"AB" and bar"AD"`.


If a parallelogram is constructed on the vectors `bar"a" = 3bar"p" - bar"q", bar"b" = bar"p" + 3bar"q" and |bar"p"| = |bar"q"| = 2` and angle between `bar"p" and bar"q"` is `pi/3,` and angle between lengths of the sides is `sqrt7 : sqrt13`.


Show that the vector area of a triangle ABC, the position vectors of whose vertices are `bar"a", bar"b" and bar"c"` is `1/2[bar"a" xx bar"b" + bar"b" xx bar"c" + bar"c" xx bar"a"]`.


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`|bar"a"|(bar"b".bar"c")`


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`|bar"a"|. (bar"b" + bar"c")`


a and b are non-collinear vectors. If p = (2x + 1) a - band q = (x - 2)a +b are collinear vectors, then x = ______.


lf `overlinea` and `overlineb` be two unit vectors and θ is the angle between them, then `|overlinea - overlineb|` is equal to ______


If the vectors `xhat"i" - 3hat"j" + 7hat"k" and hat"i" + "y"hat"j" - "z"hat"k"` are collinear then the value of `"xy"^2/"z"` is equal.


For any non zero vector, a, b, c a · ((b + c) × (a + b + c)] = ______.


Find a vector of magnitude 11 in the direction opposite to that of `vec"PQ"` where P and Q are the points (1, 3, 2) and (–1, 0, 8), respectively.


If `veca` and `vecb` are unit vectors, then what is the angle between `veca` and `vecb` for `sqrt(3)  veca - vecb` to be a unit vector?


If `vec"a" = hat"i" + hat"j" + 2hat"k"` and `vec"b" = 2hat"i" + hat"j" - 2hat"k"`, find the unit vector in the direction of `6vec"b"`


If `vec"a", vec"b", vec"c"` determine the vertices of a triangle, show that `1/2[vec"b" xx vec"c" + vec"c" xx vec"a" + vec"a" xx vec"b"]` gives the vector area of the triangle. Hence deduce the condition that the three points `vec"a", vec"b", vec"c"` are collinear. Also find the unit vector normal to the plane of the triangle.


In Figure, identify the following vector.

 

Collinear but not equal


Let `veca, vecb` and `vecc` be three unit vectors such that `veca xx (vecb xx vecc) = sqrt(3)/2 (vecb + vecc)`. If `vecb` is not parallel to `vecc`, then the angle between `veca` and `vecc` is


`bara, barb` and `barc` are three vectors such that `veca + vecb + vecc` 20,  `|bara| = 1, |barb| = 2` and `|barc| = 3`. Then `bara. barb + barb.barc + bar(c.a)` is equal to


Let the vectors `vec(a)` such `vec(b)` that `|veca|` = 3 and `|vecb| = sqrt(2)/3`, then `veca xx vecb` is a unit vector if the angle between `veca` and `vecb` is


In the triangle PQR, `bar("P""Q")`= `2 bar"a"` and `bar ("QR")` = `2 barb`.The mid - point of PR is M. Find following vector in term of  `bar a ` and `barb.`

  1. `bar("P""R")` 
  2. `bar("P""M")`
  3. `bar("Q""M")`

Check whether the vectors `2hati + 2hatj + 3hatk, -3hati + 3hatj + 2hatk` and `3hati + 4hatk` form a triangle or not.


Check whether the vectors `2hati +2hatj+3hatk, -3hati +3hatj +2hatk and 3hati +4hatk` form a triangle or not.


In the triangle PQR, `bar(PQ)` = 2`bara` and `bar(QR)` = 2`barb`. The mid-point of PR is M. Find following vectors in terms of `bara` and `barb`.

  1. `bar(PR)`
  2. `bar(PM)`
  3. `bar(QM)`

In the triangle PQR, `bar(PQ)=2bara` and `bar(QR)=2barb`. The mid-point of PR is M. Find following vectors in terms of `bara and barb`.

(i) `bar(PR)`  (ii) `bar(PM)`  (iii) `bar(QM)`


In the triangle PQR, `bar"PQ" = bar"2a", bar"QR" = bar"2b"`. The midpoint of PR is M. Find the following vectors in terms of `bar"a"` and `bar"b"`:

(i) `bar"PR"` (ii) `bar"PM"` (iii) `bar"QM"`.


In the triangle PQR, `bar(PQ)`= 2`bar a` and `bar(QR)`= 2`bar b` . The mid-point of PR is M. Find following vectors in terms of `bara` and `barb`.

  1.  `bar(PR)`
  2. `bar(PM)`
  3. `bar(QM)`

Consider the following statements and choose the correct option:

Statement 1: If `veca` and `vecb` represents two adjacent sides of a parallelogram then the diagonals are represented by `veca + vecb` and `veca - vecb`.

Statement 2: If `veca` and `vecb` represents two diagonals of a parallelogram then the adjacent sides are represented by `2(veca + vecb)` and `2(veca - vecb)`.

Which of the following is correct?


Check whether the vectors `2hati + 2hatj + 3hatk, -3hati + 3hatj + 2hatk and 3hati + 4hatk`  form a triangle or not. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×