मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

If a parallelogram is constructed on the vectors apqbpqandpqa¯=3p¯-q¯,b¯=p¯+3q¯and|p¯|=|q¯|=2 and angle between pandqp¯andq¯ is π3, and angle between lengths of the sides is 7:13. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If a parallelogram is constructed on the vectors `bar"a" = 3bar"p" - bar"q", bar"b" = bar"p" + 3bar"q" and |bar"p"| = |bar"q"| = 2` and angle between `bar"p" and bar"q"` is `pi/3,` and angle between lengths of the sides is `sqrt7 : sqrt13`.

बेरीज

उत्तर

`|bar"p"| = |bar"q"| = 2` and angle between `bar"p" and bar"q"` is `pi/3`.

∴ `bar"p".bar"q" = |bar"p"||bar"q"| "cos" pi/3 = 2xx2xx1/2 = 2`

Now, `bar"a" = 3bar"p" - bar"q"`

∴ `|bar"a"|^2 = |(3bar"p" - bar"q")|^2`

`= (3bar"p" - bar"q").(3bar"p" - bar"q")`

`= 3bar"p".(3bar"p" - bar"q") - bar"q".(3bar"p" - bar"q")`

`= 9bar"p".bar"p" - 3bar"p".bar"q" - 3bar"q".bar"p" + bar"q".bar"q"`

`= 9|bar"p"|^2 - 6bar"p".bar"q" + |bar"q"|^2`   .....`[∵ bar"q".bar"p" = bar"p".bar"q"]`

`= 9xx4 - 6xx2 + 4          .......[∵ bar"p"bar"q" = 2]`

= 28

∴ `|bar"a"| = sqrt28`

Also `bar"b" = bar"p" + 3bar"q"`

∴ `|bar"b"|^2 = |bar"p" + 3bar"q"|^2`

`= (bar"p" + 3bar"q").(bar"p" + 3bar"q")`

`= bar"p"(bar"p" + 3bar"q") + 3bar"q"(bar"p" + 3bar"q")`

`= bar"p".bar"p" + 3bar"p".bar"q" - 3bar"q".bar"p" + 9bar"q".bar"q"    ......[∵ bar"p".bar"q" = bar"q".bar"p"]`

`= |bar"p"|^2 + 3bar"p""q" + 3bar"p".bar"q" + 9 |bar"q"|^2`

= 4 + 12 + 36          ......`[∵ bar"p".bar"q" = 2]`

= 52

∴ `|bar"b"| = sqrt52`

Ratio of lengths of the sides

`= |bar"a"|/|bar"b"| = sqrt28/sqrt52 = (2sqrt7)/(2sqrt13) = sqrt7/sqrt13`.

Hence, the ratio of the lengths of the sides is `sqrt7 : sqrt13`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Vectors - Miscellaneous exercise 5 [पृष्ठ १९१]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 5 Vectors
Miscellaneous exercise 5 | Q II. 23) | पृष्ठ १९१

संबंधित प्रश्‍न

If \[\vec{a}\] and \[\vec{b}\] are two non-collinear vectors such that \[x \vec{a} + y \vec{b} = \vec{0} ,\] then write the values of x and y.


If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] represent the sides of a triangle taken in order, then write the value of \[\vec{a} + \vec{b} + \vec{c} .\]


If \[\overrightarrow{a}\], \[\overrightarrow{b}\], \[\overrightarrow{c}\] are the position vectors of the vertices of a triangle, then write the position vector of its centroid.


If G denotes the centroid of ∆ABC, then write the value of \[\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} .\]


If \[\overrightarrow{a}\] is a non-zero vector of modulus a and m is a non-zero scalar such that m \[\overrightarrow{a}\] is a unit vector, write the value of m.


Write the position vector of a point dividing the line segment joining points having position vectors \[\hat{i} + \hat{j} - 2 \hat{k} \text{ and }2 \hat{i} - \hat{j} + 3 \hat{k}\] externally in the ratio 2:3.


Find a unit vector in the direction of \[\overrightarrow{a} = 2 \hat{i} - 3 \hat{j} + 6 \hat{k}\].


If \[\left| \overrightarrow{a} \right| = 4\] and \[- 3 \leq \lambda \leq 2\], then write the range of \[\left| \lambda \vec{a} \right|\].


Write the position vector of the point which divides the join of points with position vectors \[3 \overrightarrow{a} - 2 \overrightarrow{b}\text{ and }2 \overrightarrow{a} + 3 \overrightarrow{b}\] in the ratio 2 : 1.


In a regular hexagon ABCDEF, A \[\vec{B}\] = a, B \[\vec{C}\] = \[\overrightarrow{b}\text{ and }\overrightarrow{CD} = \vec{c}\].
Then, \[\overrightarrow{AE}\] =


The vector equation of the plane passing through \[\vec{a} , \vec{b} , \vec{c} ,\text{ is }\vec{r} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} ,\] provided that

 


If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] and \[\vec{d}\] are the position vectors of points A, B, C, D such that no three of them are collinear and \[\vec{a} + \vec{c} = \vec{b} + \vec{d} ,\] then ABCD is a


Let G be the centroid of ∆ ABC. If \[\overrightarrow{AB} = \vec{a,} \overrightarrow{AC} = \vec{b,}\] then the bisector \[\overrightarrow{AG} ,\] in terms of \[\vec{a}\text{ and }\vec{b}\] is


Find the components along the coordinate axes of the position vector of the following point :

S(4, –3)


Find the coordinates of the point which is located in the YZ-plane, one unit to the right of the XZ- plane, and six units above the XY-plane.


Select the correct option from the given alternatives:

The volume of tetrahedron whose vectices are (1,-6,10), (-1, -3, 7), (5, -1, λ) and (7, -4, 7) is 11 cu units, then the value of λ is


Select the correct option from the given alternatives:

The value of `hat"i".(hat"j" xx hat"k") + hat"j".(hat"i" xx hat"k") + hat"k".(hat"i" xx hat"j")` is


If two sides of a triangle are `hat"i" + 2hat"j" and hat"i" + hat"k"`, find the length of the third side.


If `|bar"a"| = |bar"b"| = 1,  bar"a".bar"b" = 0, bar"a" + bar"b" + bar"c" = bar"0", "find"  |bar"c"|`.


Find the component form of `bar"a"` if it lies in YZ-plane makes 60° with positive Y-axis and `|bar"a"| = 4`.


If P is orthocentre, Q is the circumcentre and G is the centroid of a triangle ABC, then prove that `bar"QP" = 3bar"QG"`.


Express the vector `bar"a" = 5hat"i" - 2hat"j" + 5hat"k"` as a sum of two vectors such that one is parallel to the vector `bar"b" = 3hat"i" + hat"k"` and other is perpendicular to `bar"b"`.


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`bar"a". bar"b" + bar"c"`


For any vectors `bar"a", bar"b", bar"c"` show that `(bar"a" + bar"b" + bar"c") xx bar"c" + (bar"a" + bar"b" + bar"c") xx bar"b" + (bar"b" - bar"c") xx bar"a" = 2bar"a" xx bar"c"`


The points A(- a, -b), B (0, 0), C(a, b) and D(a2 , ab) are ______.


The area of the parallelogram whose adjacent sides are `hat"i" + hat"k"` and `2hat"i" + hat"j" + hat"k"` is ______.


Classify the following measures as scalar and vector.

2 meters north-west


Classify the following measures as scalar and vector.

10-19 coulomb


Classify the following as scalar and vector quantity.

Distance


Classify the following as scalar and vector quantity.

Velocity


`bara, barb` and `barc` are three vectors such that `veca + vecb + vecc` 20,  `|bara| = 1, |barb| = 2` and `|barc| = 3`. Then `bara. barb + barb.barc + bar(c.a)` is equal to


Find `|vecx|` if `(vecx - veca).(vecx + veca)` = 12, where `veca` is a unit vector.


The angles of a triangle, two of whose sides are represented by the vectors `sqrt(3)(veca xx vecb)` and `vecb - (veca.vecb)veca` where `vecb` is a non-zero vector and `veca` is a unit vector are ______.


If points P(4, 5, x), Q(3, y, 4) and R(5, 8, 0) are collinear, then the value of x + y is ______.


In the triangle PQR, `bar(PQ) = 2bara` and `bar(QR)=2barb`. The mid-point of PR is M. Find following vectors in terms of `bar a and bar b `.

  1. `bar("PR")`
  2. `bar("PM")`
  3. `bar("QM")`

Find the value of λ for which the points (6, – 1, 2), (8, – 7, λ) and (5, 2, 4) are collinear.


Check whether the vectors `2hati + 2hatj + 3hatk, -3hati + 3hatj + 2hatk` and `3hati + 4hatk` form a triangle or not.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×