मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Find two unit vectors each of which makes equal angles with bar"u", bar"v" and bar"w" where bar"u" = 2hat"i" + hat"j" - 2hat"k", bar"v" = hat"i"+ 2hat"j" - 2hat"k", bar"w" = 2hat"i" - 2hat"j" + hat"k" - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find two unit vectors each of which makes equal angles with bar"u", bar"v" and bar"w" where bar"u" = 2hat"i" + hat"j" - 2hat"k", bar"v" = hat"i" + 2hat"j" - 2hat"k", bar"w" = 2hat"i" - 2hat"j" + hat"k".

बेरीज

उत्तर

Let `bar"r" = "x"hat"i" + "y"hat"j" + "z"hat"k"` be the unit vector which makes angle  θ with each of the vectors

Then `|bar"r"| = 1`

Also, `bar"u" = 2hat"i" + hat"j" - 2hat"k", bar"v"= hat"i" + 2hat"j" - 2hat"k", bar"w" = 2hat"i" - 2hat"j" + hat"k"`

`|bar"u"| = sqrt(2^2 + 1^2 + (- 2)^2) = sqrt(4 + 1 + 4) = sqrt9 = 3`

`|bar"v"| = sqrt(1^2 + 2^2 + (- 2)^2) = sqrt(1 + 4 + 4) = sqrt9 = 3`

`|bar"w"| = sqrt(2^2 + (- 2)^2 + 1^2) = sqrt(4 + 4 + 1) = sqrt9 = 3`

Angle between `bar"r" and bar"u"` is θ

∴ cos θ = `(bar"r".bar"u")/(|bar"r"||bar"u"|)`

`= (("x"hat"i" + "y"hat"j" + "z"hat"k").(2hat"i" + hat"j" - 2hat"k"))/(1xx3)`

`= (2"x" + "y" - 2"z")/3`          ....(1)

Also, the angle between `bar"r" and bar"v"` and between `bar"r" and bar"w"` is θ.

∴ cos θ = `(bar"r".bar"u")/(|bar"r"||bar"u"|)`

`= (("x"hat"i" + "y"hat"j" + "z"hat"k").(hat"i" + 2hat"j" - 2hat"k"))/(1xx3)`

`= ("x" + 2"y" - 2"z")/3`          ....(2)

and cos θ `= (bar"r".bar"u")/(|bar"r"||bar"u"|)`

`= (("x"hat"i" + "y"hat"j" + "z"hat"k").(2hat"i" - 2hat"j" + hat"k"))/(1xx3)`

`= (2"x" - 2"y" + "z")/3`          ....(3)

From (1) and (2), we get

`(2"x" + "y" - 2"z")/3 = ("x" + 2"y" - 2"z")/3`

∴ 2x + y - 2z = x + 2y - 2z

∴ x = y

From (2) and (3), we get

`("x" + 2"y" - 2"z")/3 = (2"x" - 2"y" + "z")/3`

∴ x + 2y - 2z = 2x - 2y + z

∴ 3y = 3z         .....[∵ x = y]

∴ y = z

∴ x = y = z

∴ `bar"r" = "x"hat"i" + "y"hat"j" + "z"hat"k" = "x"hat"i" + "x"hat"j" + "x"hat"k"`

∴ `|bar"r"| = sqrt("x"^2 + "x"^2 + "x"^2) = 1`

∴ `"x"^2 + "x"^2 + "x"^2 = 1`

∴ `3"x"^2 = 1`

∴ `"x"^2 = 1/3`

∴ x = `- 1/sqrt3 `

∴ `bar"r" = +- 1/sqrt3 hat"i" +- 1/sqrt3 hat"j" +- 1/sqrt3hat"k" `

`= +- 1/sqrt3 (hat"i" + hat"j" + hat"k")`

Hence, the required unit vectors are `+- 1/sqrt3 (hat"i" + hat"j" + hat"k")`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Vectors - Miscellaneous exercise 5 [पृष्ठ १९१]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 5 Vectors
Miscellaneous exercise 5 | Q II. 25) | पृष्ठ १९१

संबंधित प्रश्‍न

If G denotes the centroid of ∆ABC, then write the value of \[\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} .\]


If \[\overrightarrow{a} = \hat{i} + \hat{j} , \vec{b} = \hat{j} + \hat{k} \text{ and }\vec{c} = \hat{k} + \hat{i} ,\] write unit vectors parallel to \[\overrightarrow{a} + \overrightarrow{b} - 2 \overrightarrow{c} .\]


If \[\overrightarrow{a} = \hat{i} + \hat{j} , \overrightarrow{b} = \hat{j} + \hat{k} , \overrightarrow{c} = \hat{k} + \hat{i}\], find the unit vector in the direction of \[\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\].


If \[\left| \overrightarrow{a} \right| = 4\] and \[- 3 \leq \lambda \leq 2\], then write the range of \[\left| \lambda \vec{a} \right|\].


If \[\vec{a} , \vec{b} , \vec{c}\] are three non-zero vectors, no two of which are collinear and the vector \[\vec{a} + \vec{b}\] is collinear with \[\vec{c} , \vec{b} + \vec{c}\] is collinear with \[\vec{a} ,\] then \[\vec{a} + \vec{b} + \vec{c} =\]

 


If O and O' are circumcentre and orthocentre of ∆ ABC, then \[\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}\] equals 


If \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] and \[\vec{d}\] are the position vectors of points A, B, C, D such that no three of them are collinear and \[\vec{a} + \vec{c} = \vec{b} + \vec{d} ,\] then ABCD is a


ABCD is a parallelogram with AC and BD as diagonals.
Then, \[\overrightarrow{AC} - \overrightarrow{BD} =\] 


Find a unit vector perpendicular to each of the vectors `veca + vecb  "and"  veca - vecb  "where"  veca = 3hati + 2hatj + 2hatk and vecb = i + 2hatj - 2hatk` 


OABCDE is a regular hexagon. The points A and B have position vectors `bar"a"` and `bar"b"` respectively referred to the origin O. Find, in terms of `bar"a"` and `bar"b"` the position vectors of C, D and E.


ABCDEF is a regular hexagon. Show that `bar"AB" + bar"AC" + bar"AD" + bar"AE" + bar"AF" = 6bar"AO"`, where O is the centre of the hexagon.


If `|bara|` = 3, `|barb|` = 5, `|barc|` = 7 and `bara + barb + barc = bar0`, then the angle between `bara` and `barb` is ______.


Select the correct option from the given alternatives:

If l, m, n are direction cosines of a line then `"l"hat
"i" + "m"hat"j" + "n"hat"k"` is ______ 


Select the correct option from the given alternatives:

Let α, β, γ be distinct real numbers. The points with position vectors `alphahat"i" + betahat"j" + gammahat"k",  betahat"i" + gammahat"j" + alphahat"k",   gammahat"i" + alphahat"j" + betahat"k"`


Find the lengths of the sides of the triangle and also determine the type of a triangle:

A(2, -1, 0), B(4, 1, 1), C(4, -5, 4)


Find the lengths of the sides of the triangle and also determine the type of a triangle:

L (3, -2, -3), M (7, 0, 1), N(1, 2, 1).


If P is orthocentre, Q is the circumcentre and G is the centroid of a triangle ABC, then prove that `bar"QP" = 3bar"QG"`.


Let bar"b" = 4hat"i" + 3hat"j" and bar"c" be two vectors perpendicular to each other in the XY-plane. Find the vector in the same plane having projection 1 and 2 along bar"b" and bar"c" respectively.


State whether the expression is meaningful. If not, explain why? If so, state whether it is a vector or a scalar:

`bar"a" xx(bar"b" xx bar"c")`


For any vectors `bar"a", bar"b", bar"c"` show that `(bar"a" + bar"b" + bar"c") xx bar"c" + (bar"a" + bar"b" + bar"c") xx bar"b" + (bar"b" - bar"c") xx bar"a" = 2bar"a" xx bar"c"`


For any vector `overlinex` the value of `(overlinex xx hati)^2 + (overlinex xx hatj)^2 + (overlinex xx hatk)^2` is equal to ______


If `vec"a" = 2hat"i" - hat"j" + hat"k", vec"b" = hat"i" + hat"j" - 2hat"k"` and `vec"c" = hat"i" + 3hat"j" - hat"k"`, find `lambda` such that `vec"a"` is perpendicular to `lambdavec"b" + vec"c"`.


The 2 vectors `hat"j" + hat"k"` and `3hat"i" - hat"j" + 4hat"k"` represents the two sides AB and AC, respectively of a ∆ABC. The length of the median through A is ______.


If `veca` and `vecb` are unit vectors, then what is the angle between `veca` and `vecb` for `sqrt(3)  veca - vecb` to be a unit vector?


The vector `vec"a" + vec"b"` bisects the angle between the non-collinear vectors `vec"a"` and `vec"b"` if ______.


Classify the following as scalar and vector quantity.

Velocity


In Figure, identify the following vector.

Equal


For given vectors, `veca = 2hati - hatj + 2hatk` and `vecb = - hati + hatj - hatk` find the unit vector in the direction of the vector `veca + vecb`.


Find `|veca xx vecb|`, if `veca = hati - 7hatj + 7hatk` and  `vecb = 3hati - 2hatj + 2hatk`


Check whether the vectors `2hati +2hatj+3hatk, -3hati +3hatj +2hatk and 3hati +4hatk` form a triangle or not.


In the triangle PQR, `bar(PQ)` = 2`bara` and `bar(QR)` = 2`barb`. The mid-point of PR is M. Find following vectors in terms of `bara` and `barb`.

  1. `bar(PR)`
  2. `bar(PM)`
  3. `bar(QM)`

In the triangle PQR, `bar(PQ)=2bara` and `bar(QR)=2barb`. The mid-point of PR is M. Find following vectors in terms of `bara and barb`.

(i) `bar(PR)`  (ii) `bar(PM)`  (iii) `bar(QM)`


Check whether the vectors `2hati + 2hatj + 3hatk, -3hati + 3hatj + 2hatk and 3hati + 4hatk` form a triangle or not.


Check whether the vectors `2 hati+2 hatj+3 hatk,-3 hati+3 hatj+2 hatk and 3 hati +4 hatk` form a triangle or not.


In the triangle PQR, `bar"PQ" = bar"2a", bar"QR" = bar"2b"`. The midpoint of PR is M. Find the following vectors in terms of `bar"a"` and `bar"b"`:

(i) `bar"PR"` (ii) `bar"PM"` (iii) `bar"QM"`.


Check whether the vectors `2hati + 2hatj +3hatk, - 3hati + 3hatj + 2hatk and 3hati + 4hatk` form a triangle or not. 


Check whether the vectors `2hati + 2hatj + 3hatk, -3hati + 3hatj + 2hatk and 3hati + 4hatk`  form a triangle or not. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×