हिंदी

Find the Centre of the Circle Passing Through (6, -6), (3, -7) and (3, 3) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the centre of the circle passing through (6, -6), (3, -7) and (3, 3)

उत्तर

The distance d between two points `(x_1, y_1)` and `(x_2, y_2)` is given by the formula

`d = sqrt((x_1 - x_2)^2 + (y_1 -  y_2)^2)` 

The centre of a circle is at equal distance from all the points on its circumference.

Here it is given that the circle passes through the points A(6,6), B(3,7) and C(3,3).

Let the centre of the circle be represented by the point O(x, y).

So we have AO = BO = CO

`AO = sqrt((6 - x)^2 + (-6-y)^2)`

`BO  = sqrt((3 - x)^2 + (-7 - y)^2)`

`CO = sqrt((3 - x)^2 + (3 - y)^2)`

Equating the first pair of these equations we have,

AO = BO

`sqrt((6 - x)^2 + (-6-y)^2) = sqrt((3 -x)^2 + (3 -y)^2)`

Squaring on both sides of the equation we have,

`(6 - x)^2 + (-6-y)^2 = (3 - x)^2 + (3 - y)^2`

`36 + x^2 - 12x + y^2 + 12y = 9 + x^2 - 6x + y^2 - 6y`

6x - 18y = 54

`x - 3y= 9`

Now we have two equations for ‘x’ and ‘y’, which are

3x + y = 7

x - 3y = 9

From the second equation we have y = 3x + 7. Substituting this value of ‘y’ in the first quation we have,

`x - 3(-3x + 7) = 9`

x + 9x - 21 = 9

10x = 30

x = 3

Therefore the value of ‘y’ is,

y = 3x + 7

= -3(3) + 7

y = -2

Hence the co-ordinates of the centre of the circle are (3, -2).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Co-Ordinate Geometry - Exercise 6.2 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 6 Co-Ordinate Geometry
Exercise 6.2 | Q 56 | पृष्ठ १७

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×