हिंदी

Find the Coordinates of a Point Equidistant from the Origin and Points a (A, 0, 0), B (0, B, 0) Andc(0, 0, C). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the coordinates of a point equidistant from the origin and points A (a, 0, 0), B (0, b, 0) andC(0, 0, c). 

उत्तर

Let the point be P(xy, z).
Now, PO = PA 

\[\sqrt{\left( 0 - x \right)^2 + \left( 0 - y \right)^2 + \left( 0 - z \right)^2} = \sqrt{\left( a - x \right)^2 + \left( 0 - y \right)^2 + \left( 0 - z \right)}\]
\[ \Rightarrow x^2 + y^2 + z^2 = a^2 - 2ax + x^2 + y^2 + z^2 \]
\[ \Rightarrow 0 = a^2 - 2ax\]
\[ \Rightarrow x = \frac{a}{2}\] 

Also, PO = PB 

\[\sqrt{\left( 0 - x \right)^2 + \left( 0 - y \right)^2 + \left( 0 - z \right)^2} = \sqrt{\left( 0 - x \right)^2 + \left( b - y \right)^2 + \left( 0 - z \right)}\]
\[ \Rightarrow x^2 + y^2 + z^2 = x^2 + b^2 - 2by + y^2 + z^2 \]
\[ \Rightarrow 0 = b^2 - 2by\]
\[ \Rightarrow y = \frac{b}{2}\]

Again, PO = PC

\[\sqrt{\left( 0 - x \right)^2 + \left( 0 - y \right)^2 + \left( 0 - z \right)^2} = \sqrt{\left( 0 - x \right)^2 + \left( 0 - y \right)^2 + \left( c - z \right)}\]
\[ \Rightarrow x^2 + y^2 + z^2 = x^2 + y^2 + c^2 - 2cz + z^2 \]
\[ \Rightarrow 0 = c^2 - 2cz\]
\[ \Rightarrow z = \frac{c}{2}\]

Hence, the coordinates of the point is \[\left( \frac{a}{2}, \frac{b}{2}, \frac{c}{2} \right)\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 28: Introduction to three dimensional coordinate geometry - Exercise 28.4 [पृष्ठ २२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 28 Introduction to three dimensional coordinate geometry
Exercise 28.4 | Q 12 | पृष्ठ २२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A point is on the x-axis. What are its y-coordinates and z-coordinates?


A point is in the XZ-plane. What can you say about its y-coordinate?


The coordinates of points in the XY-plane are of the form _______.


Find the lengths of the medians of the triangle with vertices A (0, 0, 6), B (0, 4, 0) and (6, 0, 0).


Find the coordinates of a point on y-axis which are at a distance of `5sqrt2` from the point P (3, –2, 5).


A point R with x-coordinate 4 lies on the line segment joining the pointsP (2, –3, 4) and Q (8, 0, 10). Find the coordinates of the point R.

[Hint suppose R divides PQ in the ratio k: 1. The coordinates of the point R are given by `((8k + 2)/(k+1), (-3)/(k+1), (10k + 4)/(k+1))`


The mid-points of the sides of a triangle ABC are given by (–2, 3, 5), (4, –1, 7) and (6, 5, 3). Find the coordinates of AB and C.


A(1, 2, 3), B(0, 4, 1), C(–1, –1, –3) are the vertices of a triangle ABC. Find the point in which the bisector of the angle ∠BAC meets BC.


Using section formula, show that he points A(2, –3, 4), B(–1, 2, 1) and C(0, 1/3, 2) are collinear.

 


Find the ratio in which the line segment joining the points (4, 8, 10) and (6, 10, –8) is divided by the yz-plane. 


Write the coordinates of the point P which is five-sixth of the way from A(−2, 0, 6) to B(10, −6, −12). 


If a parallelopiped is formed by the planes drawn through the points (2,3,5) and (5, 9, 7) parallel to the coordinate planes, then write the lengths of edges of the parallelopiped and length of the diagonal. 


Determine the point on yz-plane which is equidistant from points A(2, 0, 3), B(0, 3,2) and C(0, 0,1).


If the origin is the centroid of a triangle ABC having vertices A(a, 1, 3), B(−2, b −5) and C (4, 7, c), find the values of a, b, c.


The equations of x-axis in space are ______.


The points (1, 2, 3), (–2, 3, 4) and (7, 0, 1) are collinear.


Show that the lines `(x - 1)/2 = (y - 2)/3 = (z - 3)/4` and `(x - 4)/5 = (y - 1)/2` = z intersect.. Also, find their point of intersection.


`vec(AB) = 3hati - hatj + hatk` and `vec(CD) = - 3hati + 2hatj + 4hatk` are two vectors. The position vectors of the points A and C are `6hati + 7hatj + 4hatk` and `-9hatj + 2hatk`, respectively. Find the position vector of a point P on the line AB and a point Q on the line CD such that `vec(PQ)` is perpendicular to `vec(AB)` and `vec(CD)` both.


The reflection of the point (α, β, γ) in the xy-plane is ______.


A plane passes through the points (2, 0, 0) (0, 3, 0) and (0, 0, 4). The equation of plane is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×