हिंदी

Show that the lines x-12=y-23=z-34 and x-45=y-12 = z intersect.. Also, find their point of intersection. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the lines `(x - 1)/2 = (y - 2)/3 = (z - 3)/4` and `(x - 4)/5 = (y - 1)/2` = z intersect.. Also, find their point of intersection.

योग

उत्तर

We have lines,

`L_1 : (x - 1)/2 = (y - 2)/3 = (z - 3)/4 = lambda`

And `L_2 : (x - 4)/5 = (y - 1)/2 = z = mu`

Any point on the line L1 is (`2lambda + 1, 3lambda + 2, 4lambda + 3)`

Any point on the line L2 is `(5mu + 4, 2mu + 1, mu)`

If line intersect then there exists a value of λ, μ for which

`(2lambda + 1, 3lambda + 2, 4lambda + 3) = (5mu + 4, 2mu + 1, mu)`

⇒ `2lambda + 1 = 5mu + 4, 3 lambda + 2 = 2mu + 1` and `4lambda + 3 = mu`

Solving fisrt two equations we get `lambda = - 1, mu = -1`

These values of `lambda = - 1, mu = - 1` also satisfy the third equation.

Thus lines interest.

Also the point of intersection is `(-1, -1, -1)`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Introduction to Three Dimensional Geometry - Exercise [पृष्ठ २३५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 12 Introduction to Three Dimensional Geometry
Exercise | Q 3 | पृष्ठ २३५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

A point is on the x-axis. What are its y-coordinates and z-coordinates?


Find the lengths of the medians of the triangle with vertices A (0, 0, 6), B (0, 4, 0) and (6, 0, 0).


Find the coordinates of a point on y-axis which are at a distance of `5sqrt2` from the point P (3, –2, 5).


A point R with x-coordinate 4 lies on the line segment joining the pointsP (2, –3, 4) and Q (8, 0, 10). Find the coordinates of the point R.

[Hint suppose R divides PQ in the ratio k: 1. The coordinates of the point R are given by `((8k + 2)/(k+1), (-3)/(k+1), (10k + 4)/(k+1))`


If A and B be the points (3, 4, 5) and (–1, 3, –7), respectively, find the equation of the set of points P such that PA2 + PB2 = k2, where k is a constant.


A(1, 2, 3), B(0, 4, 1), C(–1, –1, –3) are the vertices of a triangle ABC. Find the point in which the bisector of the angle ∠BAC meets BC.


Find the coordinates of the points which tisect the line segment joining the points P(4, 2, –6) and Q(10, –16, 6). 


Using section formula, show that he points A(2, –3, 4), B(–1, 2, 1) and C(0, 1/3, 2) are collinear.

 


Given that  P(3, 2, –4), Q(5, 4, –6) and R(9, 8, –10) are collinear. Find the ratio in which Qdivides PR


Find the coordinates of a point equidistant from the origin and points A (a, 0, 0), B (0, b, 0) andC(0, 0, c). 


Write the coordinates of the point P which is five-sixth of the way from A(−2, 0, 6) to B(10, −6, −12). 


If a parallelopiped is formed by the planes drawn through the points (2,3,5) and (5, 9, 7) parallel to the coordinate planes, then write the lengths of edges of the parallelopiped and length of the diagonal. 


Determine the point on yz-plane which is equidistant from points A(2, 0, 3), B(0, 3,2) and C(0, 0,1).


If the origin is the centroid of a triangle ABC having vertices A(a, 1, 3), B(−2, b −5) and C (4, 7, c), find the values of a, b, c.


The equations of x-axis in space are ______.


The points (1, 2, 3), (–2, 3, 4) and (7, 0, 1) are collinear.


The vector equation of the line passing through the points (3, 5, 4) and (5, 8, 11) is.


Find the position vector of a point A in space such that `vec(OA)` is inclined at 60º to OX and at 45° to OY and `|vec(OA)|` = 10 units


Find the vector equation of the line which is parallel to the vector `3hati - 2hatj + 6hatk` and which passes through the point (1 ,–2, 3).


`vec(AB) = 3hati - hatj + hatk` and `vec(CD) = - 3hati + 2hatj + 4hatk` are two vectors. The position vectors of the points A and C are `6hati + 7hatj + 4hatk` and `-9hatj + 2hatk`, respectively. Find the position vector of a point P on the line AB and a point Q on the line CD such that `vec(PQ)` is perpendicular to `vec(AB)` and `vec(CD)` both.


The reflection of the point (α, β, γ) in the xy-plane is ______.


A plane passes through the points (2, 0, 0) (0, 3, 0) and (0, 0, 4). The equation of plane is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×